Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174183, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909808

RESUMO

Coastal areas are an important source of methane (CH4). However, the exact origins of CH4 in the surface waters of coastal regions, which in turn drive sea-air emissions, remain uncertain. To gain a comprehensive understanding of the current and future climate change feedbacks, it is crucial to identify these CH4 sources and processes that regulate its formation and oxidation. This study investigated coastal CH4 dynamics by comparing water column data from six stations located in the brackish Tvärminne Archipelago, Baltic Sea. The sediment biogeochemistry and microbiology were further investigated at two stations (i.e., nearshore and offshore). These stations differed in terms of stratification, bottom water redox conditions, and organic matter loading. At the nearshore station, CH4 diffusion from the sediment into the water column was negligible, because nearly all CH4 was oxidized within the upper sediment column before reaching the sediment surface. On the other hand, at the offshore station, there was significant benthic diffusion of CH4, albeit the majority underwent oxidation before reaching the sediment-water interface, due to shoaling of the sulfate methane transition zone (SMTZ). The potential contribution of CH4 production in the water column was evaluated and was found to be negligible. After examining the isotopic signatures of δ13C-CH4 across the sediment and water column, it became apparent that the surface water δ13C-CH4 values observed in areas with thermal stratification could not be explained by diffusion, advective fluxes, nor production in the water column. In fact, these values bore a remarkable resemblance to those detected below the SMTZ. This supports the hypothesis that the source of CH4 in surface waters is more likely to originate from ebullition than diffusion in stratified brackish coastal systems.

2.
Environ Sci Technol ; 58(24): 10582-10590, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836357

RESUMO

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago. We cover a range of sites with contrasting water column redox conditions and rates of organic matter degradation, with the latter reflected by the depth of the sulfate-methane transition zone (SMTZ) in the sediment. We find the highest benthic release of methane (2.2-8.6 mmol m-2 d-1) at sites where the SMTZ is located close to the sediment-water interface (2-10 cm). A large proportion of methane is removed in the water column via aerobic or anaerobic microbial pathways. At many locations, water column methane is highly depleted in 13C, pointing toward substantial bubble dissolution. Calculated and measured rates of methane release to the atmosphere range from 0.03 to 0.4 mmol m-2 d-1 and from 0.1 to 1.7 mmol m-2 d-1, respectively, with the highest fluxes at locations with a shallow SMTZ and anoxic and sulfidic bottom waters. Taken together, our results show that sites suffering most from both eutrophication and deoxygenation are hotspots of coastal marine methane emissions.


Assuntos
Eutrofização , Metano , Sedimentos Geológicos/química , Água do Mar/química , Oxigênio , Atmosfera/química
3.
Nat Commun ; 14(1): 2763, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179409

RESUMO

The hydrological cycle is expected to intensify in a warming climate. However, observational evidence of such changes in the Southern Ocean is difficult to obtain due to sparse measurements and a complex superposition of changes in precipitation, sea ice, and glacial meltwater. Here we disentangle these signals using a dataset of salinity and seawater oxygen isotope observations collected in the Indian sector of the Southern Ocean. Our results show that the atmospheric water cycle has intensified in this region between 1993 and 2021, increasing the salinity in subtropical surface waters by 0.06 ± 0.07 g kg-1 per decade, and decreasing the salinity in subpolar surface waters by -0.02 ± 0.01 g kg-1 per decade. The oxygen isotope data allow to discriminate the different freshwater processes showing that in the subpolar region, the freshening is largely driven by the increase in net precipitation (by a factor two) while the decrease in sea ice melt is largely balanced by the contribution of glacial meltwater at these latitudes. These changes extend the growing evidence for an acceleration of the hydrological cycle and a melting cryosphere that can be expected from global warming.

4.
Nat Chem ; 15(2): 294, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36717615
5.
Nat Commun ; 13(1): 2519, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534467

RESUMO

Floating ice shelves buttress inland ice and curtail grounded-ice discharge. Climate warming causes melting and ultimately breakup of ice shelves, which could escalate ocean-bound ice discharge and thereby sea-level rise. Should ice shelves collapse, it is unclear whether they could recover, even if we meet the goals of the Paris Agreement. Here, we use a numerical ice-sheet model to determine if Petermann Ice Shelf in northwest Greenland can recover from a future breakup. Our experiments suggest that post-breakup recovery of confined ice shelves like Petermann's is unlikely, unless iceberg calving is greatly reduced. Ice discharge from Petermann Glacier also remains up to 40% higher than today, even if the ocean cools below present-day temperatures. If this behaviour is not unique for Petermann, continued near-future ocean warming may push the ice shelves protecting Earth's polar ice sheets into a new retreated high-discharge state which may be exceedingly difficult to recover from.


Assuntos
Camada de Gelo , Elevação do Nível do Mar , Clima , Congelamento , Temperatura
6.
Front Microbiol ; 11: 1536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733420

RESUMO

Coastal zones are transitional areas between land and sea where large amounts of organic and inorganic carbon compounds are recycled by microbes. Especially shallow zones near land have been shown to be the main source for oceanic methane (CH4) emissions. Water depth has been predicted as the best explanatory variable, which is related to CH4 ebullition, but exactly how sediment methanotrophs mediates these emissions along water depth is unknown. Here, we investigated the relative abundance and RNA transcripts attributed to methane oxidation proteins of aerobic methanotrophs in the sediment of shallow coastal zones with high CH4 concentrations within a depth gradient from 10-45 m. Field sampling consisted of collecting sediment (top 0-2 cm layer) from eight stations along this depth gradient in the coastal Baltic Sea. The relative abundance and RNA transcripts attributed to the CH4 oxidizing protein (pMMO; particulate methane monooxygenase) of the dominant methanotroph Methylococcales was significantly higher in deeper costal offshore areas (36-45 m water depth) compared to adjacent shallow zones (10-28 m). This was in accordance with the shallow zones having higher CH4 concentrations in the surface water, as well as more CH4 seeps from the sediment. Furthermore, our findings indicate that the low prevalence of Methylococcales and RNA transcripts attributed to pMMO was restrained to the euphotic zone (indicated by Photosynthetically active radiation (PAR) data, photosynthesis proteins, and 18S rRNA data of benthic diatoms). This was also indicated by a positive relationship between water depth and the relative abundance of Methylococcales and pMMO. How these processes are affected by light availability requires further studies. CH4 ebullition potentially bypasses aerobic methanotrophs in shallow coastal areas, reducing CH4 availability and limiting their growth. Such mechanism could help explain their reduced relative abundance and related RNA transcripts for pMMO. These findings can partly explain the difference in CH4 concentrations between shallow and deep coastal areas, and the relationship between CH4 concentrations and water depth.

7.
Nat Commun ; 9(1): 2104, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844384

RESUMO

Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (∼730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.

8.
Sci Rep ; 7(1): 15192, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123176

RESUMO

Although there is enough heat contained in inflowing warm Atlantic Ocean water to melt all Arctic sea ice within a few years, a cold halocline limits upward heat transport from the Atlantic water. The amount of heat that penetrates the halocline to reach the sea ice is not well known, but vertical heat transport through the halocline layer can significantly increase in the presence of double diffusive convection. Such convection can occur when salinity and temperature gradients share the same sign, often resulting in the formation of thermohaline staircases. Staircase structures in the Arctic Ocean have been previously identified and the associated double diffusive convection has been suggested to influence the Arctic Ocean in general and the fate of the Arctic sea ice cover in particular. A central challenge to understanding the role of double diffusive convection in vertical heat transport is one of observation. Here, we use broadband echo sounders to characterize Arctic thermohaline staircases at their full vertical and horizontal resolution over large spatial areas (100 s of kms). In doing so, we offer new insight into the mechanism of thermohaline staircase evolution and scale, and hence fluxes, with implications for understanding ocean mixing processes and ocean-sea ice interactions.

9.
Nat Commun ; 7: 10365, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26778247

RESUMO

The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

10.
Nature ; 453(7199): 1236-8, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18580949

RESUMO

Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.


Assuntos
Erupções Vulcânicas/estatística & dados numéricos , Animais , Regiões Árticas , Geografia , Oceanografia , Oceanos e Mares , Poríferos , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA