Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 138(24): 2570-2582, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34329381

RESUMO

Sickle cell disease (SCD) is characterized by hemolytic anemia, which can trigger oxidative stress, inflammation, and tissue injury that contribute to disease complications. Bone marrow mesenchymal stromal cells (MSCs) tightly regulate hematopoietic stem cell (HSC) homeostasis in health and disease, but their functionality in SCD remains unclear. We identified for the first time that murine SCD MSCs have altered gene signatures, reduced stem cell properties, and increased oxidative stress, due in part to hemolysis. Murine SCD MSCs had lower HSC maintenance ability in vitro and in vivo, as manifested by increased HSC mobilization and decreased HSC engraftment after transplant. Activation of Toll-like receptor-4 through p65 in MSCs further contributed to MSC dysfunction. Transfusions led to an improved MSC and HSC oxidative state in SCD mice. Improving the regulation between MSCs and HSCs has vital implications for enhancing clinical HSC transplantation and gene therapy outcomes and for identification of new molecular targets for alleviating SCD complications.


Assuntos
Anemia Falciforme/patologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Mesenquimais/patologia , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/terapia , Animais , Transfusão de Sangue , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hemólise , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Transcriptoma
2.
JCI Insight ; 4(16)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31434805

RESUMO

The complex process of platelet formation originates with the hematopoietic stem cell, which differentiates through the myeloid lineage, matures, and releases proplatelets into the BM sinusoids. How formed platelets maintain a low basal activation state in the circulation remains unknown. We identify Lepr+ stromal cells lining the BM sinusoids as important contributors to sustaining low platelet activation. Ablation of murine Lepr+ cells led to a decreased number of platelets in the circulation with an increased activation state. We developed a potentially novel culture system for supporting platelet formation in vitro using a unique population of CD51+PDGFRα+ perivascular cells, derived from human umbilical cord tissue, which display numerous mesenchymal stem cell (MSC) properties. Megakaryocytes cocultured with MSCs had altered LAT and Rap1b gene expression, yielding platelets that are functional with low basal activation levels, a critical consideration for developing a transfusion product. Identification of a regulatory cell that maintains low baseline platelet activation during thrombopoiesis opens up new avenues for improving blood product production ex vivo.


Assuntos
Plaquetas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Ativação Plaquetária , Trombopoese/fisiologia , Animais , Antígenos CD34 , Plaquetas/imunologia , Plaquetas/metabolismo , Técnicas de Cocultura , Sangue Fetal , Humanos , Camundongos , Camundongos Transgênicos , Receptores para Leptina/genética , Receptores para Leptina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA