Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 25(7): 709-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32484408

RESUMO

Three-dimensional (3D) spheroid models are rapidly gaining favor for drug discovery applications due to their improved morphological characteristics, cellular complexity, long lifespan in culture, and higher physiological relevance relative to two-dimensional (2D) cell culture models. High-content imaging (HCI) of 3D spheroid models has the potential to provide valuable information to help researchers untangle disease pathophysiology and assess novel therapies more effectively. The transition from 2D monolayer models to dense 3D spheroids in HCI applications is not trivial, however, and requires 3D-optimized protocols, instrumentation, and resources. Here, we discuss considerations for moving from 2D to 3D models and present a framework for HCI and analysis of 3D spheroid models in a drug discovery setting. We combined scaffold-free, multicellular spheroid models with scalable, automation-compatible plate technology enabling image-based applications ranging from high-throughput screening to more complex, lower-throughput microphysiological systems of organ networks. We used this framework in three case studies: investigation of lipid droplet accumulation in a human liver nonalcoholic steatohepatitis (NASH) model, real-time immune cell interactions in a multicellular 3D lung cancer model, and a high-throughput screening application using a 3D co-culture model of gastric carcinoma to assess dose-dependent drug efficacy and specificity. The results of these proof-of-concept studies demonstrate the potential for high-resolution image-based analysis of 3D spheroid models for drug discovery applications, and confirm that cell-level and temporal-spatial analyses that fully exploit multicellular features of spheroid models are not only possible but soon will be routine practice in drug discovery workflows.


Assuntos
Descoberta de Drogas , Imageamento Tridimensional/tendências , Imagem Molecular/tendências , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Humanos , Gotículas Lipídicas/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/ultraestrutura , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
2.
Appl Environ Microbiol ; 82(9): 2791-2799, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921431

RESUMO

UNLABELLED: Analysis of bacterial gene function commonly relies on gene disruption or replacement followed by phenotypic characterization of the resulting mutant strains. Deletion or replacement of targeted regions is commonly achieved via two homologous recombination (HR) events between the bacterial genome and a nonreplicating plasmid carrying DNA fragments flanking the region to be deleted. The counterselection of clones that have integrated the entire plasmid in their genome via a single HR event is crucial in this procedure. Various genetic tools and well-established protocols are available for this type of mutagenesis in model bacteria; however, these methods are not always efficiently applicable in less established systems. Here we describe the construction and application of versatile plasmid vectors pREDSIX and pTETSIX for marker replacement and markerless mutagenesis, respectively. Apart from an array of restriction sites optimized for cloning of GC-rich DNA fragments, the vector backbone contains a constitutively expressed gene for mCherry, enabling the rapid identification of clones originating from single or double HR events by fluorescence-assisted cell sorting (FACS). In parallel, we constructed a series of plasmids from which gene cassettes providing resistance against gentamicin, kanamycin, hygromycin B, streptomycin and spectinomycin, or tetracycline were excised for use with pREDSIX-based marker replacement mutagenesis. In proof-of-concept mutagenesis experiments, we demonstrated the potential for the use of the developed tools for gene deletion mutagenesis in the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens(formerly Bradyrhizobium japonicum) and three additional members of the alphaproteobacteria. IMPORTANCE: Mutation and phenotypic analysis are essential to the study of gene function. Efficient mutagenesis protocols and tools are available for many bacterial species, including various model organisms; however, genetic analysis of less-well-characterized organisms is often impaired by the lack of efficient methods. Here we describe a set of novel genetic tools for facilitated mutagenesis of the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens and related alphaproteobacteria. We demonstrated their usefulness by generating several mutant strains lacking defined genes. Isolation of both antibiotic resistance gene-containing and markerless deletion mutants is greatly facilitated because undesired clones which contain the entire mutagenic plasmid integrated in the genome can be identified on the basis of their fluorescent phenotype derived from them Cherrygene carried by the vector backbone. The possibility to generate markerless mutants assists with the isolation of strains carrying multiple deletions, which can be crucial while studying functionally redundant genes.


Assuntos
Alphaproteobacteria/genética , Bradyrhizobium/genética , Vetores Genéticos/genética , Antibacterianos/farmacologia , Sequência de Bases , Mapeamento Cromossômico , Farmacorresistência Bacteriana , Deleção de Genes , Genética Microbiana/métodos , Genoma Bacteriano , Mutagênese Sítio-Dirigida , Fenótipo , Plasmídeos/genética , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA