Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 3(1): e1600815, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138544

RESUMO

The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.

3.
Proc Natl Acad Sci U S A ; 114(8): 1868-1873, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167791

RESUMO

Over 450 pre-Columbian (pre-AD 1492) geometric ditched enclosures ("geoglyphs") occupy ∼13,000 km2 of Acre state, Brazil, representing a key discovery of Amazonian archaeology. These huge earthworks were concealed for centuries under terra firme (upland interfluvial) rainforest, directly challenging the "pristine" status of this ecosystem and its perceived vulnerability to human impacts. We reconstruct the environmental context of geoglyph construction and the nature, extent, and legacy of associated human impacts. We show that bamboo forest dominated the region for ≥6,000 y and that only small, temporary clearings were made to build the geoglyphs; however, construction occurred within anthropogenic forest that had been actively managed for millennia. In the absence of widespread deforestation, exploitation of forest products shaped a largely forested landscape that survived intact until the late 20th century.


Assuntos
Arqueologia , Conservação dos Recursos Naturais , Floresta Úmida , Brasil , Humanos
4.
Ecology ; 96(3): 642-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26236861

RESUMO

Various environmental factors, including atmospheric CO2 (pCO2), regional climate, and fire, have been invoked as primary drivers of long-term variation in C4 grass abundance. Evaluating these hypotheses has been difficult because available paleorecords often lack information on past C4 grass abundance or potential environmental drivers. We analyzed carbon isotope ratios (delta13C) of individual grains of grass pollen in the sediments of two East African lakes to infer changes in the relative abundance of C3 vs. C4 grasses during the past 25 000 years. Results were compared with concurrent changes in pCO2, temperature, moisture balance, and fire activity. Our grass-pollen delta13C analysis reveals a dynamic history of grass-dominated vegetation in equatorial East Africa: C4 grasses have not consistently dominated lowland areas, and high-elevation grasses have not always been predominantly C3. On millennial timescales, C4 grass abundance does not correlate with charcoal influx at either site, suggesting that fire was not a major proximate control of the competitive balance between C3 and C4 grasses. Above the present-day treeline on Mt. Kenya, C4 grass abundance declined from an average of approximately 90% during the glacial period to less than approximately 60% throughout the Holocene, coincident with increases in pCO2 and temperature, and shifts in moisture balance. In the lowland savanna southeast of Mt. Kilimanjaro, C4 grass abundance showed no such directional trend, but fluctuated markedly in association with variation in rainfall amount and seasonal-drought severity. These results underscore spatiotemporal variability in the relative influence of pCO2 and climate on the interplay of C3 and C4 grasses and shed light on an emerging conceptual model regarding the expansion of C4-dominated grasslands in Earth's history. They also suggest that future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of varying combinations of environmental controls.


Assuntos
Dióxido de Carbono/análise , Clima , Incêndios , Poaceae/fisiologia , Atmosfera , Carbono/química , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Pradaria , Quênia , Paleontologia , Poaceae/química , Densidade Demográfica
5.
Rapid Commun Mass Spectrom ; 25(11): 1567-74, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21594931

RESUMO

Stable isotope analysis of sedimentary carbon in lakes can help reveal changes in terrestrial and aquatic carbon cycles. A method based on a single, photosynthetic organism, where host effects are minimised, should offer more precision than carbon isotope studies of bulk lake sediments. Here we report the development of a systematic method for use on fossil lacustrine diatom frustules, adapted from previous studies in marine environments. A step-wise cleaning experiment on diatomaceous lake sediments from Lake Challa, near Mount Kilimanjaro, was made to demonstrate the necessary treatment stages to remove external sedimentary carbon. Changes in soluble carbon compounds during these cleaning experiments were measured using gas chromatography/mass spectrometry (GC/MS). The mass spectrometry methods were refined to measure the small percentage of carbon in these samples and details of these methods are presented. Samples of cleaned diatoms containing <1% carbon yielded robust results. Carbon isotope analyses of diatom samples containing different species mixtures were performed and suggested that differences existed, although the effects lay within current experimental error and require further work. Unlike what was found in work on oxygen and silicon isotopes from diatom frustules, mineral contamination had no discernible impact on the diatom carbon isotope ratios from these sediments. The range of values found in the lakes investigated thus far can be interpreted with reference to the supply and nature of carbon from the catchment as well as to the demand generated from lake primary productivity.


Assuntos
Isótopos de Carbono/análise , Diatomáceas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/química , Diatomáceas/classificação , Água Doce , Quênia , Tanzânia
6.
Nat Commun ; 1: 56, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20975722

RESUMO

Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO(2)), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO(2)-C equivalent (CO(2)-C(e)) per year (12% of current anthropogenic CO(2)-C(e) emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO(2)-C(e), without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset.


Assuntos
Carvão Vegetal , Mudança Climática , Dióxido de Carbono/metabolismo , Metano/metabolismo , Óxido Nitroso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA