Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830299

RESUMO

The rise in antimicrobial resistant bacteria is limiting the number of effective treatments for bacterial infections. Escherichia coli and Pseudomonas aeruginosa are two of the pathogens with the highest prevalence of resistance, and with the greatest need for new antimicrobial agents. Combinations of antimicrobial peptides (AMPs) and antibiotics that display synergistic effects have been shown to be an effective strategy in the development of novel therapeutic agents. In this study, we investigated the synergy between the AMP LL-37 and various classes of antibiotics against E. coli and P. aeruginosa strains. Of the six antibiotics tested (ampicillin, tetracycline, ciprofloxacin, gentamicin, aztreonam, and polymyxin B (PMB)), LL-37 displayed the strongest synergy against E. coli MG1655 and P. aeruginosa PAO1 laboratory strains when combined with PMB. Given the strong synergy, the PMB + LL-37 combination was chosen for further examination where it demonstrated synergy against multidrug-resistant and clinical E. coli isolates. Synergy of PMB + LL-37 towards clinical isolates of P. aeruginosa varied and showed synergistic, additive, or indifferent effects. The PMB + LL-37 combination treatment showed significant prevention of biofilm formation as well as eradication of pre-grown E. coli and P. aeruginosa biofilms. Using the Galleria mellonella wax worm model, we showed that the PMB + LL-37 combination treatment retained its antibacterial capacities in vivo. Flow analyses were performed to characterize the mode of action. The results of the present study provide proof of principle for the synergistic response between LL-37 and PMB and give novel insights into a promising new antimicrobial combination against gram-negative planktonic and biofilm cells.

2.
AIMS Microbiol ; 4(1): 173-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31294209

RESUMO

The rapid adaptation of the opportunistic bacterial pathogen Pseudomonas aeruginosa to various growth modes and environmental conditions is controlled in part through diverse two-component regulatory systems. Some of these systems are well studied, but the majority are poorly characterized, even though it is likely that several of these systems contribute to virulence. Here, we screened all available strain PA14 mutants in 50 sensor kinases, 50 response regulators and 5 hybrid sensor/regulators, for contributions to cytotoxicity against cultured human bronchial epithelial cells, as assessed by the release of cytosolic lactate dehydrogenase. This enabled the identification of 8 response regulators and 3 sensor kinases that caused substantial decreases in cytotoxicity, and 5 response regulators and 8 sensor kinases that significantly increased cytotoxicity by 15-58% or more. These regulators were additionally involved in motility, adherence, type 3 secretion, production of cytotoxins, and the development of biofilms. Here we investigated in more detail the roles of FleSR, PilSR and WspR. Not all cognate pairs contributed to cytotoxicity (e.g. PhoPQ, PilSR) in the same way and some differences could be detected between the same mutants in PAO1 and PA14 strain backgrounds (e.g. FleSR, PhoPQ). This study highlights the potential importance of these regulators and their downstream targets on pathogenesis and demonstrates that cytotoxicity can be regulated by several systems and that their contributions are partly dependent on strain background.

3.
Nucleic Acids Res ; 43(13): 6413-25, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26082498

RESUMO

Two-component systems (TCS) serve as stimulus-response coupling mechanisms to allow organisms to adapt to a variety of environmental conditions. The opportunistic pathogen Pseudomonas aeruginosa encodes for more than 100 TCS components. To avoid unwanted cross-talk, signaling cascades are very specific, with one sensor talking to its cognate response regulator (RR). However, cross-regulation may provide means to integrate different environmental stimuli into a harmonized output response. By applying a split luciferase complementation assay, we identified a functional interaction of two RRs of the OmpR/PhoB subfamily, namely PhoB and TctD in P. aeruginosa. Transcriptional profiling, ChIP-seq analysis and a global motif scan uncovered the regulons of the two RRs as well as a quadripartite binding motif in six promoter regions. Phosphate limitation resulted in PhoB-dependent expression of the downstream genes, whereas the presence of TctD counteracted this activation. Thus, the integration of two important environmental signals e.g. phosphate availability and the carbon source are achieved by a titration of the relative amounts of two phosphorylated RRs that inversely regulate a common subset of genes. In conclusion, our results on the PhoB and TctD mediated two-component signal transduction pathways exemplify how P. aeruginosa may exploit cross-regulation to adapt bacterial behavior to complex environments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Transdução de Sinais , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Proteínas de Ligação a DNA/genética , Luciferases/análise , Luciferases/genética , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Regulon , Transcrição Gênica
4.
Curr Pharm Des ; 21(1): 67-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25189860

RESUMO

The increasing prevalence of persistent biofilm infections, such as wound infections, chronic lung infections or medical device- related infections, which usually tolerate conventional antibiotic treatment, calls for the development of new therapeutic strategies. To date, antimicrobial peptides (AMPs) are considered as promising agents in the fight against multidrug-resistant bacterial biofilm infections, since many of them have been shown to prevent biofilm formation or even kill preexisting, mature biofilms of several Gram-positive and Gram-negative bacteria in addition to their bactericidal actions to planktonic cells. In this mini-review, we summarize in vitro and in vivo antibiofilm properties of natural and synthetic cationic AMPs against clinically relevant bacterial pathogens. Furthermore, the benefits and challenges in the use of AMPs for the medical treatment of bacterial biofilm infections are discussed.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Prevalência
5.
Appl Environ Microbiol ; 81(4): 1274-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501476

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas Quinases/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
6.
PLoS One ; 7(11): e49123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145092

RESUMO

Pseudomonas aeruginosa PAO1 lon mutants are supersusceptible to ciprofloxacin, and exhibit a defect in cell division and in virulence-related properties, such as swarming, twitching and biofilm formation, despite the fact that the Lon protease is not a traditional regulator. Here we set out to investigate the influence of a lon mutation in a series of infection models. It was demonstrated that the lon mutant had a defect in cytotoxicity towards epithelial cells, was less virulent in an amoeba model as well as a mouse acute lung infection model, and impacted on in vivo survival in a rat model of chronic infection. Using qRT-PCR it was demonstrated that the lon mutation led to a down-regulation of Type III secretion genes. The Lon protease also influenced motility and biofilm formation in a mucin-rich environment. Thus alterations in several virulence-related processes in vitro in a lon mutant were reflected by defective virulence in vivo.


Assuntos
Ciprofloxacina/farmacologia , Protease La , Infecções por Pseudomonas , Pseudomonas aeruginosa/patogenicidade , Animais , Divisão Celular , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Protease La/genética , Protease La/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ratos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA