RESUMO
The integrity of the distinguishing, multilaminate cell envelope surrounding mycobacteria is critical to their survival and pathogenesis. The prevalence of phosphatidylinositol mannosides in the cell envelope suggests an important role in the mycobacterial life cycle. Indeed, deletion of the pimE gene (ΔpimE) encoding the first committed step in phosphatidylinositol hexamannoside biosynthesis in Mycobacterium smegmatis results in the formation of smaller colonies than wild-type colonies on Middlebrook 7H10 agar. To further investigate potential contributors to cell-envelope mannan biosynthesis while taking advantage of this colony morphology defect, we isolated spontaneous suppressor mutants of ΔpimE that reverted to wild-type colony size. Of 22 suppressor mutants, 6 accumulated significantly shorter lipomannan or lipoarabinomannan. Genome sequencing of these mutants revealed mutations in genes involved in the lipomannan/lipoarabinomannan biosynthesis, such as those encoding the arabinosyltransferase EmbC and the mannosyltransferase MptA. Furthermore, we identified three mutants carrying a mutation in a previously uncharacterized gene, MSMEG_5785, that we designated lmeA Complementation of these suppressor mutants with lmeA restored the original ΔpimE phenotypes and deletion of lmeA in wild-type M. smegmatis resulted in smaller lipomannan, as observed in the suppressor mutants. LmeA carries a predicted N-terminal signal peptide, and density gradient fractionation and detergent extractability experiments indicated that LmeA localizes to the cell envelope. Using a lipid ELISA, we found that LmeA binds to plasma membrane phospholipids, such as phosphatidylethanolamine and phosphatidylinositol. LmeA is widespread throughout the Corynebacteriales; therefore, we concluded that LmeA is an evolutionarily conserved cell-envelope protein critical for controlling the mannan chain length of lipomannan/lipoarabinomannan.
Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Mananas/biossíntese , Manosiltransferases/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Mananas/genética , Manosiltransferases/genética , Mycobacterium smegmatis/genética , Fosfolipídeos/genética , Fosfolipídeos/metabolismoRESUMO
Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells.