Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718306

RESUMO

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Assuntos
Criptosporidiose , Interferon gama , Mucosa Intestinal , Camundongos Knockout , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Camundongos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Cryptosporidium , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Enterócitos/parasitologia , Enterócitos/metabolismo , Enterócitos/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Fator de Transcrição STAT1/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Transdução de Sinais
2.
Mucosal Immunol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508522

RESUMO

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the major histocompatibility complex-I restricted SIINFEKL epitope which is recognized by T cell receptor transgenic OT-I(OVA-TCR-I) clusters of differentiation (CD)8+ T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8+ T cells that were a source of interferon-gamma (IFN-γ) that could restrict growth of Cryptosporidium. This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (rhoptry protein 1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells, type 1 conventional dendritic cells were required to generate CD8+ T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as potential targets of the immune system and suggest that crosstalk between enterocytes and type 1 conventional dendritic cells is crucial for CD8+ T cell responses to Cryptosporidium.

3.
Nat Commun ; 15(1): 379, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191574

RESUMO

In Apicomplexa, rhoptry discharge is essential for invasion and involves an apical vesicle (AV) docking one or two rhoptries to a macromolecular secretory apparatus. Toxoplasma gondii is armed with 10-12 rhoptries and 5-6 microtubule-associated vesicles (MVs) presumably for iterative rhoptry discharge. Here, we have addressed the localization and functional significance of two intraconoidal microtubule (ICMT)-associated proteins instrumental for invasion. Mechanistically, depletion of ICMAP2 leads to a dissociation of the ICMTs, their detachment from the conoid and dispersion of MVs and rhoptries. ICMAP3 exists in two isoforms that contribute to the control of the ICMTs length and the docking of the two rhoptries at the AV, respectively. This study illuminates the central role ICMTs play in scaffolding the discharge of multiple rhoptries. This process is instrumental for virulence in the mouse model of infection and in addition promotes sterile protection against T. gondii via the release of key effectors inducing immunity.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas Associadas aos Microtúbulos , Citoesqueleto , Microtúbulos , Transporte Biológico
4.
Nat Rev Immunol ; 24(2): 142-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697084

RESUMO

Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.


Assuntos
Criptosporidiose , Cryptosporidium , Animais , Camundongos , Criança , Humanos , Pré-Escolar , Criptosporidiose/genética , Criptosporidiose/parasitologia , Intestinos
5.
Proc Natl Acad Sci U S A ; 121(1): e2313210120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147547

RESUMO

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Cruzamentos Genéticos , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium parvum/genética , Estágios do Ciclo de Vida
6.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014026

RESUMO

Cryptosporidium is an enteric pathogen that is a prominent cause of diarrheal disease. Control of this infection requires CD4+ T cells, though the processes that lead to T cell-mediated resistance have been difficult to assess. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to dissect the early events that influence CD4+ T cell priming and effector function. These studies highlight that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node (mesLN) and differentiate into Th1 cells in the gut, where they mediate IFN-γ-dependent control of the infection. Although type 1 conventional dendritic cells (cDC1s) were not required for initial priming of CD4+ T cells, cDC1s were required for CD4+ T cell expansion and gut homing. cDC1s were also a major source of IL-12 that was not required for priming but promoted full differentiation of CD4+ T cells and local production of IFN-γ. Together, these studies reveal distinct roles for cDC1s in shaping CD4+ T cell responses to enteric infection: first to drive early expansion in the mesLN and second to drive effector responses in the gut.

7.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014210

RESUMO

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. The use of single cell RNA sequencing to profile IEC during infection revealed induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells, and IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ demonstrated the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ-mediated bystander activation of uninfected enterocytes is important for control of Cryptosporidium.

8.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37848036

RESUMO

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Assuntos
Síndrome de COVID-19 Pós-Aguda , Serotonina , Humanos , COVID-19/complicações , Progressão da Doença , Inflamação , Síndrome de COVID-19 Pós-Aguda/sangue , Síndrome de COVID-19 Pós-Aguda/patologia , Serotonina/sangue , Viroses
9.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577700

RESUMO

Parasites and their hosts are engaged in rapid coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing C. parvum, a parasite of cattle and humans, and C. tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward- genetic analysis of parasite biology and host specificity.

11.
Nat Commun ; 14(1): 4800, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558667

RESUMO

The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Toxoplasma , Animais , Humanos , Parasitos/metabolismo , Actinas/metabolismo , Tomografia com Microscopia Eletrônica , Citoesqueleto de Actina/metabolismo , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo
12.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645924

RESUMO

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 + T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8 + T cells that were a source of IFN-γ that could restrict growth of Cryptosporidium . This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (ROP1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells (IEC), type I dendritic cells (cDC1) were required to generate CD8 + T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as targets of the immune system and suggest that crosstalk between enterocytes and cDC1s is crucial for CD8 + T cell responses to Cryptosporidium .

13.
Cell Host Microbe ; 31(4): 650-664.e6, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36958336

RESUMO

Cryptosporidium is a leading cause of diarrheal disease in children and an important contributor to early childhood mortality. The parasite invades and extensively remodels intestinal epithelial cells, building an elaborate interface structure. How this occurs at the molecular level and the contributing parasite factors are largely unknown. Here, we generated a whole-cell spatial proteome of the Cryptosporidium sporozoite and used genetic and cell biological experimentation to discover the Cryptosporidium-secreted effector proteome. These findings reveal multiple organelles, including an original secretory organelle, and generate numerous compartment markers by tagging native gene loci. We show that secreted proteins are delivered to the parasite-host interface, where they assemble into different structures including a ring that anchors the parasite into its unique epicellular niche. Cryptosporidium thus uses a complex set of secretion systems during and following invasion that act in concert to subjugate its host cell.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Pré-Escolar , Criança , Humanos , Proteoma , Organelas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interações Hospedeiro-Parasita
14.
mBio ; 14(2): e0326122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786597

RESUMO

The apicomplexan parasite Cryptosporidium is a leading global cause of diarrheal disease, and the infection poses a particularly grave threat to young children and those with weakened immune function. Infection occurs by ingestion of meiotic spores called oocysts, and transmission relies on fecal shedding of new oocysts. The entire life cycle thus occurs in a single host and features asexual as well as sexual forms of replication. Here, we identify and locus tag two Apetala 2-type (AP2) transcription factors and demonstrate that they are exclusively expressed in male and female gametes, respectively. To enable functional studies of essential genes in Cryptosporidium parvum, we develop and validate a small-molecule-inducible gene excision system, which we apply to the female factor AP2-F to achieve conditional gene knockout. Analyzing this mutant, we find the factor to be dispensable for asexual growth and early female fate determination in vitro but to be required for oocyst shedding in infected animals in vivo. Transcriptional analyses conducted in the presence or absence of AP2-F revealed that the factor controls the transcription of genes encoding crystalloid body proteins, which are exclusively expressed in female gametes. In C. parvum, the organelle is restricted to sporozoites, and its loss in other apicomplexan parasites leads to blocked transmission. Overall, our development of conditional gene ablation in C. parvum provides a robust method for genetic analysis in this parasite that enabled us to identify AP2-F as an essential regulator of transcription required for oocyst shedding and transmission. IMPORTANCE The parasite Cryptosporidium infects millions of people worldwide each year, leading to life-threatening diarrheal disease in young children and immunosuppressed individuals. There is no vaccine and only limited treatment. Transmission occurs via the fecal-oral route by an environmentally resilient spore-like oocyst. Infection takes place in the intestinal epithelium, where parasites initially propagate asexually before transitioning to male and female gametes, with sex leading to the formation of new oocysts. The essential role of sexual development for continuous infection and transmission makes it an attractive target for therapy and prevention. To study essential genes and potential drug targets across the life cycle, we established inducible gene excision for C. parvum. We determined that the female-specific transcription factor AP2-F is not required for asexual growth and early female development in vitro but is necessary for oocyst shedding in vivo. This work enhances the genetic tools available to study Cryptosporidium gene function.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Masculino , Feminino , Oocistos/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Criptosporidiose/parasitologia , Estágios do Ciclo de Vida , Diarreia , Fezes/parasitologia
15.
J Immunol ; 209(12): 2261-2268, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36469846

RESUMO

Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.


Assuntos
Criptosporidiose , Cryptosporidium , Síndromes de Imunodeficiência , Humanos , Diarreia/complicações , Diarreia/parasitologia , Hospedeiro Imunocomprometido
16.
EMBO J ; 41(22): e111158, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36245278

RESUMO

Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.


Assuntos
Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Exocitose , Proteínas de Membrana/metabolismo , Interações Hospedeiro-Parasita
17.
PLoS Pathog ; 18(5): e1010003, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584177

RESUMO

Cryptosporidium is a leading cause of severe diarrhea and diarrheal-related death in children worldwide. As an obligate intracellular parasite, Cryptosporidium relies on intestinal epithelial cells to provide a niche for its growth and survival, but little is known about the contributions that the infected cell makes to this relationship. Here we conducted a genome wide CRISPR/Cas9 knockout screen to discover host genes that influence Cryptosporidium parvum infection and/or host cell survival. Gene enrichment analysis indicated that the host interferon response, glycosaminoglycan (GAG) and glycosylphosphatidylinositol (GPI) anchor biosynthesis are important determinants of susceptibility to C. parvum infection and impact on the viability of host cells in the context of parasite infection. Several of these pathways are linked to parasite attachment and invasion and C-type lectins on the surface of the parasite. Evaluation of transcript and protein induction of innate interferons revealed a pronounced type III interferon response to Cryptosporidium in human cells as well as in mice. Treatment of mice with IFNλ reduced infection burden and protected immunocompromised mice from severe outcomes including death, with effects that required STAT1 signaling in the enterocyte. Initiation of this type III interferon response was dependent on sustained intracellular growth and mediated by the pattern recognition receptor TLR3. We conclude that host cell intrinsic recognition of Cryptosporidium results in IFNλ production critical to early protection against this infection.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Interferons , Receptor 3 Toll-Like , Animais , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Cryptosporidium parvum/imunologia , Diarreia , Interferons/imunologia , Camundongos , Receptor 3 Toll-Like/imunologia , Interferon lambda
18.
PLoS Biol ; 20(4): e3001604, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35436284

RESUMO

Cryptosporidium is a leading infectious cause of diarrhea around the world associated with waterborne outbreaks, community spread, or zoonotic transmission. The parasite has significant impact on early childhood mortality, and infection is both a consequence and cause of malnutrition and stunting. There is currently no vaccine, and treatment options are very limited. Cryptosporidium is a member of the Apicomplexa, and, as typical for this, protist phylum relies on asexual and sexual reproduction. In contrast to other Apicomplexa, including the malaria parasite Plasmodium, the entire Cryptosporidium life cycle unfolds in a single host in less than 3 days. Here, we establish a model to image life cycle progression in living cells and observe, track, and compare nuclear division of asexual and sexual stage parasites. We establish the length and sequence of the cell cycles of all stages and map the developmental fate of parasites across multiple rounds of invasion and egress. We propose that the parasite executes an intrinsic program of 3 generations of asexual replication, followed by a single generation of sexual stages that is independent of environmental stimuli. We find no evidence for a morphologically distinct intermediate stage (the tetraploid type II meront) but demonstrate direct development of gametes from 8N type I meronts. The progeny of each meront is collectively committed to either asexual or sexual fate, but, importantly, meronts committed to sexual fate give rise to both males and females. We define a Cryptosporidium life cycle matching Tyzzer's original description and inconsistent with the coccidian life cycle now shown in many textbooks.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Pré-Escolar , Criptosporidiose/parasitologia , Feminino , Células Germinativas , Humanos , Estágios do Ciclo de Vida , Masculino
19.
Genome Res ; 32(1): 203-213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764149

RESUMO

Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/genética , Cryptosporidium/genética , Variações do Número de Cópias de DNA , Genoma , Humanos , Telômero/genética
20.
Mucosal Immunol ; 15(2): 362-372, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750455

RESUMO

The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C. parvum, we show that epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC) production of IFN-γ required for early parasite control. The loss of IFN-γ-mediated STAT1 signaling in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Transcriptional profiling of enterocytes from infected mice identified an IFN-γ signature and enrichment of the anti-microbial effectors IDO, GBP, and IRG. Deletion experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote ILC production of IFN-γ that acts on enterocytes to restrict the growth of Cryptosporidium.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Criptosporidiose/parasitologia , Enterócitos , Humanos , Imunidade Inata , Linfócitos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA