Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 32(4): 304-313, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939126

RESUMO

Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 ß-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.


Assuntos
Celulose 1,4-beta-Celobiosidase , Manose , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/metabolismo , Glicosilação , Manose/metabolismo , Manosidases/genética , Manosidases/metabolismo , alfa-Manosidase/metabolismo
2.
ACS Cent Sci ; 5(6): 1067-1078, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31263766

RESUMO

Plant polysaccharides represent a virtually unlimited feedstock for the generation of biofuels and other commodities. However, the extraordinary recalcitrance of plant polysaccharides toward breakdown necessitates a continued search for enzymes that degrade these materials efficiently under defined conditions. Activity-based protein profiling provides a route for the functional discovery of such enzymes in complex mixtures and under industrially relevant conditions. Here, we show the detection and identification of ß-xylosidases and endo-ß-1,4-xylanases in the secretomes of Aspergillus niger, by the use of chemical probes inspired by the ß-glucosidase inhibitor cyclophellitol. Furthermore, we demonstrate the use of these activity-based probes (ABPs) to assess enzyme-substrate specificities, thermal stabilities, and other biotechnologically relevant parameters. Our experiments highlight the utility of ABPs as promising tools for the discovery of relevant enzymes useful for biomass breakdown.

3.
Nat Commun ; 6: 5961, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608804

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by ß-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.


Assuntos
Ácidos/química , Maltose/química , Oxigenases de Função Mista/química , Oligossacarídeos/química , Polissacarídeos/química , Domínio Catalítico , Celulose/química , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Evolução Molecular , Fungos/enzimologia , Genômica , Histidina/química , Oxigênio/química , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido , Especificidade por Substrato , beta-Amilase/química
4.
J Agric Food Chem ; 57(10): 4168-76, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19388639

RESUMO

Asparaginase, an enzyme that hydrolyzes asparagine to aspartic acid, presents a potentially very effective means for reducing acrylamide formation in foods via removal of the precursor, asparagine, from the primary ingredients. An extracellular asparaginase amenable to industrial production was cloned and expressed in Aspergillus oryzae . This asparaginase was tested in a range of food products, including semisweet biscuits, ginger biscuits, crisp bread, French fries, and sliced potato chips. In dough-based applications, addition of asparaginase resulted in reduction of acrylamide content in the final products of 34-92%. Enzyme dose, dough resting time, and water content were identified as critical parameters. Treating French fries and sliced potato chips was more challenging as the solid nature of these whole-cut products limits enzyme-substrate contact. However, by treating potato pieces with asparaginase after blanching, the acrylamide levels in French fries could be lowered by 60-85% and that in potato chips by up to 60%.


Assuntos
Acrilamida/antagonistas & inibidores , Asparaginase/administração & dosagem , Aspergillus oryzae/enzimologia , Análise de Alimentos , Manipulação de Alimentos/métodos , Acrilamida/análise , Asparaginase/metabolismo , Pão/análise , Contaminação de Alimentos/prevenção & controle , Tubérculos/química , Proteínas Recombinantes/administração & dosagem , Solanum tuberosum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA