Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 395: 130387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295956

RESUMO

Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.


Assuntos
Fibras na Dieta , Hidrolases , Humanos , Fibras na Dieta/metabolismo , Ácidos Cumáricos/metabolismo , Xilanos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo
2.
Carbohydr Polym ; 320: 121233, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659797

RESUMO

Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of ß-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS). The GH10 xylanase from Aspergillus aculeatus (AcXyn10A) and GH11 from Thermomyces lanuginosus (TlXyn11) showed the highest activity, producing larger amounts of small oligosaccharides in shorter time. The GH8 xylanase from Bacillus sp. (BXyn8) produced linear xylooligosaccharides and was most restricted by arabinose substitution, whereas GH5_34 from Gonapodya prolifera (GpXyn5_34) required arabinose substitution and produced longer (A)XOS substituted on the reducing end. The complementary substrate specificity of BXyn8 and GpXyn5_34 revealed how arabinoses were distributed along the xylan backbones. This study demonstrates that AX source and xylanase specificity influence the production of oligosaccharides with specific structures, which in turn impacts the growth of specific bacteria (Bacteroides ovatus and Bifidobacterium adolescentis) and the production of beneficial metabolites (short-chain fatty acids).

3.
Artigo em Inglês | MEDLINE | ID: mdl-32850731

RESUMO

Fungal genomes often contain several copies of genes that encode carbohydrate active enzymes having similar activity. The copies usually have slight sequence variability, and it has been suggested that the multigenecity represents distinct reaction optima versions of the enzyme. Whether the copies represent differences in substrate attack proficiencies of the enzyme have rarely been considered. The genomes of Aspergillus species encode several pectin lyases (EC 4.2.2.10), which all belong to polysaccharide lyase subfamily PL1_4 in the CAZy database. The enzymes differ in terms of sequence identity and phylogeny, and exhibit structural differences near the active site in their homology models. These enzymes catalyze pectin degradation via eliminative cleavage of the α-(1,4) glycosidic linkages in homogalacturonan with a preference for linkages between methyl-esterified galacturonate residues. This study examines four different pectin lyases (PelB, PelC, PelD, and PelF) encoded by the same Aspergillus sp. (namely A. luchuensis), and further compares two PelA pectin lyases from two related Aspergillus spp. (A. aculeatus and A. tubingensis). We report the phylogeny, enzyme kinetics, and enzymatic degradation profiles of the enzymes' action on apple pectin, citrus pectin, and sugar beet pectin. All the pectin lyases exerted highest reaction rate on apple pectin [degree of methoxylation (DM) 69%, degree of acetylation (DAc) 2%] and lowest reaction rate on sugar beet pectin (DM 56%, DAc 19%). Activity comparison at pH 5-5.5 produced the following ranking: PelB > PelA > PelD > PelF > PelC. The evolution of homogalacturonan-oligomer product profiles during reaction was analyzed by liquid chromatography with mass spectrometry (LC-MS) detection. This analyses revealed subtle differences in the product profiles indicating distinct substrate degradation preferences amongst the enzymes, notably with regard to acetyl substitutions. The LC-MS product profiling analysis thus disclosed that the multigenecity appears to provide the fungus with additional substrate degradation versatility. This product profiling furthermore represents a novel approach to functionally compare pectin-degrading enzymes, which can help explain structure-function relations and reaction properties of disparate copies of carbohydrate active enzymes. A better understanding of the product profiles generated by pectin modifying enzymes has significant implications for targeted pectin modification in food and biorefinery processes.

4.
FEBS J ; 281(17): 3894-903, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041335

RESUMO

Expression of a Trichoderma reesei gene coding for a putative GH30 xylanase in Aspergillus oryzae led to isolation and purification of a novel xylanase exhibiting catalytic properties different from those of the previously characterized GH30 xylanase XYN IV of T. reesei. The novel enzyme, named XYN VI, exhibited catalytic properties similar to appendage-dependent GH30 glucuronoxylanases previously recognized only in bacteria. XYN VI showed high specific activity only on xylans or xylooligosaccharides containing 4-O-methyl-D-glucuronic acid or D-glucuronic acid side substituents. The cleavage of the main chain takes place primarily at the second glycosidic linkage from the branch towards the reducing end of the polysaccharides or aldouronic acids. These catalytic properties resemble bacterial GH30 glucuronoxylanases, although the recognition of the uronic acid side chains by XYN VI is apparently based on interaction of the substrate with other amino acids. Moreover, in contrast to bacterial enzymes, XYN VI is also capable of slower but significant cleavage of unsubstituted parts of xylan and acidic xylooligosaccharides. The data point to a great catalytic diversity of xylanases produced by the most extensively studied cellulolytic fungus.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Xilanos/metabolismo , Xilosidases/metabolismo , Sequência de Aminoácidos , Alinhamento de Sequência , Especificidade por Substrato , Trichoderma/enzimologia , Xilosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA