Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 147(13): 134703, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987117

RESUMO

The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

2.
Phys Chem Chem Phys ; 15(7): 2309-20, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23295944

RESUMO

Understanding and leveraging physicochemical processes at the pore scale are believed to be essential to future performance improvements of supercapacitors and capacitive desalination (CD) cells. Here, we report on a combination of electrochemical experiments and fully atomistic simulations to study the effect of pore size and surface charge density on the capacitance of graphitic nanoporous carbon electrodes. Specifically, we used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to study the effect of potential and pore size on the capacitance of nanoporous carbon foams. Molecular dynamics simulations were performed to study the pore-size dependent accumulation of aqueous electrolytes in slit-shaped graphitic carbon pores of different widths (0.65 to 1.6 nm). Experimentally, we observe a pronounced increase of the capacitance of sub-nm pores as the applied potential window gets wider, from a few F g(-1) for narrow potential ranges (-0.3 to 0.3 V vs. Ag/AgCl) to ~40 F g(-1) for wider potential windows (-0.9 V to 0.9 V vs. Ag/AgCl). By contrast, the capacitance of wider pores does not depend significantly on the applied potential window. Molecular dynamics simulations confirm that the penetration of ions into pores becomes more difficult with decreasing pore width and increasing strength of the hydration shell. Consistent with our experimental results, we observe a pore- and ion-size dependent threshold-like charging behavior when the pore width becomes comparable to the size of the hydrated ion (0.65 nm pores for Na(+) and 0.79 nm pores for Cl(-) ions). The observed pore-size and potential dependent accumulation of ions in slit-shaped carbon pores can be explained by the hydration structure of the ions entering the charged pores. The results are discussed in view of their effect on energy-storage and desalination efficiency.

3.
J Phys Chem B ; 116(42): 12769-82, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23025795

RESUMO

Understanding and controlling how carbon nanotubes interact with phospholipid membranes is necessary for preventing adverse effects of these relatively new, but still exciting, materials. Futuristic applications envision incorporating carbon nanotubes in liposomes for personalized medicine, controlled delivery, and imaging. Because of their ability to penetrate phospholipid bilayers, nanotubes could serve as nanoscale syringes to deliver molecular cargo and develop gene therapy. Several experimental reports available on the subject demonstrate the need for a better understanding, at the molecular level, of whether carbon nanotubes penetrate, reside, and perturb phospholipid bilayers. Using all-atom molecular dynamics simulations, we quantify how short carbon nanotubes (~6 nm in length) embedded within a DOPC phospholipid membrane perturb the structure, organization, and dynamics of the lipid molecules within the membrane. It is found that the structural perturbation is very short-ranged, although it becomes pronounced when bundles of carbon nanotubes are formed within the membrane. The presence of the nanotubes is found to reduce the mobility of lipid molecules within the membrane and to perturb the structure of interfacial water. Our observations suggest that the local perturbations in the lipid structure caused by the nanotubes could lead to enhanced penetration of molecular compounds across the membrane.


Assuntos
Bicamadas Lipídicas/química , Nanotubos de Carbono/química , Fosfatidilcolinas/química , Algoritmos , Modelos Moleculares , Simulação de Dinâmica Molecular
4.
Langmuir ; 28(2): 1256-66, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148873

RESUMO

All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion-surface, water-ion, and only in some cases ion-ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl(-) ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na(+) or Cs(+) ions are present in the systems considered). The cations show significant ion-specific behavior. Na(+) ions occupy different positions within the pore as the degree of protonation changes, while Cs(+) ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs(+) is always greater than that of Na(+) ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.


Assuntos
Césio/química , Cloretos/química , Dióxido de Silício/química , Cloreto de Sódio/química , Cristalização , Prótons , Água/química
5.
Langmuir ; 21(21): 9457-67, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16207022

RESUMO

We report experimental and simulation studies to investigate the effect of temperature on the adsorption isotherms for water in carbons. Adsorption isotherms are measured by a gravimetric technique in carbon-fiber monoliths at 378 and 423 K and studied by molecular simulation in ideal carbon pores in the temperature range 298-600 K. Experimental adsorption isotherms show a gradual water uptake, as the pressure increases, and narrow adsorption-desorption hysteresis loops. In contrast, simulated adsorption isotherms at room temperature are characterized by negligible uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. As the temperature increases, the relative pressure at which pore filling occurs increases and the size of the hysteresis loop decreases. Experimental adsorption-desorption hysteresis loops are narrower than those from simulation. Discrepancies between simulation and experimental results are attributed to heterogeneities in chemical composition, pore connectivity, and nonuniform pore-size distribution, which are not accounted for in the simulation model. The hysteresis phase diagram for confined water is obtained by recording the pressure-density conditions that bound the simulated hysteresis loop at each temperature. We find that the hysteresis critical temperature, i.e., the lowest temperature at which no hysteresis is detected, can be hundreds of degrees lower than the vapor-liquid critical temperature for bulk model water. The properties of confined water are discussed with the aid of simulation snapshots and by analyzing the structure of the confined fluid.

6.
J Chem Phys ; 123(6): 64710, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16122338

RESUMO

In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

7.
J Chem Phys ; 122(23): 234712, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16008478

RESUMO

Grand canonical Monte Carlo simulations are performed to study the adsorption of water in single-walled (6:6), (8:8), (10:10), (12:12), and (20:20) carbon nanotubes in the 248-548 K temperature range. At room temperature the resulting adsorption isotherms in (10:10) and wider single-walled carbon nanotubes (SWCNs) are characterized by negligible water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption/desorption hysteresis loops. The width of the hysteresis loops decreases as pore diameter narrows and it becomes negligible for water adsorption in (8:8) and (6:6) SWCNs. Results for the isosteric heat of adsorption, density profiles along the pore axis and across the pore radii, order parameter across the pore radii, and x-ray diffraction patterns are presented. Layered structures are observed when the internal diameter of the nanotubes is commensurate to the establishment of a hydrogen-bonded network. The structure of water in (8:8) and (10:10) SWCNs is ordered when the temperature is 298 and 248 K, respectively. By simulating adsorption isotherms at various temperatures, the hysteresis critical temperature, e.g., the lowest temperature at which no hysteresis can be detected, is determined for water adsorbed in (20:20), (12:12), and (10:10) SWCNs. The hysteresis critical temperature is lower than the vapor-liquid critical temperature for bulk Simple Point Charge-Extended (SPCE) water model.

8.
J Chem Phys ; 120(20): 9859-69, 2004 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268003

RESUMO

Due to the interplay of Coulombic repulsion and attractive dipolar and van der Waals interactions, solutions of globular proteins display a rich variety of phase behavior featuring fluid-fluid and fluid-solid transitions that strongly depend on solution pH and salt concentration. Using a simple model for charge, dispersion and dipole-related contributions to the interprotein potential, we calculate phase diagrams for protein solutions within the framework of second-order perturbation theory. For each phase, we determine the Helmholtz energy as the sum of a hard-sphere reference term and a perturbation term that reflects both the electrostatic and dispersion interactions. Dipolar effects can induce fluid-fluid phase separation or crystallization even in the absence of any significant dispersion attraction. Because dissolved electrolytes screen the charge-charge repulsion more strongly than the dipolar attraction, the ionic strength dependence of the potential of mean force can feature a minimum at intermediate ionic strengths offering an explanation for the observed nonmonotonic dependence of the phase behavior on salt concentration. Inclusion of correlations between charge-dipole and dipole-dipole interactions is essential for a reliable calculation of phase diagrams for systems containing charged dipolar proteins and colloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA