Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18099, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872212

RESUMO

Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes-Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.


Assuntos
Produtos Agrícolas , Praguicidas , Abelhas , Animais , Agricultura , Polinização , Tecnologia
2.
Int J Parasitol Parasites Wildl ; 18: 232-243, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35800107

RESUMO

There is clear evidence for wild insect declines globally. Habitat loss, climate change, pests, pathogens and environmental pollution have all been shown to cause detrimental effects on insects. However, interactive effects between these stressors may be the key to understanding reported declines. Here, we review the literature on pesticide and pathogen interactions for wild bees, identify knowledge gaps, and suggest avenues for future research fostering mitigation of the observed declines. The limited studies available suggest that effects of pesticides most likely override effects of pathogens. Bees feeding on flowers and building sheltered nests, are likely less adapted to toxins compared to other insects, which potential susceptibility is enhanced by the reduced number of genes encoding detoxifying enzymes compared with other insect species. However, to date all 10 studies using a fully-crossed design have been conducted in the laboratory on social bees using Crithidia spp. or Nosema spp., identifying an urgent need to test solitary bees and other pathogens. Similarly, since laboratory studies do not necessarily reflect field conditions, semi-field and field studies are essential if we are to understand these interactions and their potential effects in the real-world. In conclusion, there is a clear need for empirical (semi-)field studies on a range of pesticides, pathogens, and insect species to better understand the pathways and mechanisms underlying their potential interactions, in particular their relevance for insect fitness and population dynamics. Such data are indispensable to drive forward robust modelling of interactive effects in different environmental settings and foster predictive science. This will enable pesticide and pathogen interactions to be put into the context of other stressors more broadly, evaluating their relative importance in driving the observed declines of wild bees and other insects. Ultimately, this will enable the development of more effective mitigation measures to protect bees and the ecosystem services they supply.

3.
Sci Total Environ ; 833: 155098, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398139

RESUMO

Global insect biodiversity declines due to reduced fitness are linked to interactions between environmental stressors. In social insects, inclusive fitness depends on successful mating of reproductives, i.e. males and queens, and efficient collaborative brood care by workers. Therefore, interactive effects between malnutrition and environmental pollution on sperm and feeding glands (hypopharyngeal glands (HPGs)) would provide mechanisms for population declines, unless buffered against due to their fitness relevance. However, while negative effects for bumble bee colony fitness are known, the effects of malnutrition and insecticide exposure singly and in combination on individuals are poorly understood. Here we show, in a fully-crossed laboratory experiment, that malnutrition and insecticide exposure result in neutral or antagonistic interactions for spermatozoa and HPGs of bumble bees, Bombus terrestris, suggesting strong selection to buffer key colony fitness components. No significant effects were observed for mortality and consumption, but significant negative effects were revealed for spermatozoa traits and HPGs. The combined effects on these parameters were not higher than the individual stressor effects, which indicates an antagonistic interaction between both. Despite the clear potential for additive effects, due to the individual stressors impairing muscle quality and neurological control, simultaneous malnutrition and insecticide exposure surprisingly did not reveal an increased impact compared to individual stressors, probably due to key fitness traits being resilient. Our data support that stressor interactions require empirical tests on a case-by-case basis and need to be regarded in context to understand underlying mechanisms and so adequately mitigate the ongoing decline of the entomofauna.


Assuntos
Inseticidas , Desnutrição , Animais , Abelhas , Insetos , Inseticidas/toxicidade , Masculino , Reprodução , Espermatozoides
4.
Toxicol Rep ; 9: 36-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987978

RESUMO

Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g-1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.

5.
R Soc Open Sci ; 8(9): 210818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34540259

RESUMO

A reduction in floral resource abundance and diversity is generally observed in agro-ecosystems, along with widespread exposure to pesticides. Therefore, a better understanding on how the availability and quality of pollen diets can modulate honeybee sensitivity to pesticides is required. For that purpose, we evaluated the toxicity of acute exposure and chronic exposures to field realistic and higher concentrations of azoxystrobin (fungicide) and sulfoxaflor (insecticide) in honeybees provided with pollen diets of differing qualities (named S and BQ pollens). We found that pollen intake reduced the toxicity of the acute doses of pesticides. Contrary to azoxystrobin, chronic exposures to sulfoxaflor increased by 1.5- to 12-fold bee mortality, which was reduced by pollen intake. Most importantly, the risk of death upon exposure to a high concentration of sulfoxaflor was significantly lower for the S pollen diet when compared with the BQ pollen diet. This reduced pesticide toxicity was associated with a higher gene expression of vitellogenin, a glycoprotein that promotes bee longevity, a faster sulfoxaflor metabolization and a lower concentration of the phytochemical p-coumaric acid, known to upregulate detoxification enzymes. Thus, our study revealed that pollen quality can influence the ability of bees to metabolize pesticides and withstand their detrimental effects, providing another strong argument for the restoration of suitable foraging habitat.

6.
Sci Total Environ ; 785: 146955, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957580

RESUMO

Insecticides are contributing to global insect declines, thereby creating demand to understand the mechanisms underlying reduced fitness. In the eusocial Hymenoptera, inclusive fitness depends on successful mating of male sexuals (drones) and efficient collaborative brood care by female workers. Therefore, sublethal insecticide effects on sperm and glands used in larval feeding (hypopharyngeal glands (HPG)) would provide key mechanisms for population declines in eusocial insects. However, while negative impacts for bumblebee colony fitness have been documented, the effects of insecticide exposure on individual physiology are less well understood. Here, we show that field-realistic concentrations (4.5-40 ng ml-1) of the neonicotinoid insecticide thiamethoxam significantly impair Bombus terrestris sperm and HPGs, thereby providing plausible mechanisms underlying bumblebee population decline. In the laboratory, drones and workers were exposed to five thiamethoxam concentrations (4.5 to 1000 ng ml-1). Then, survival, food consumption, body mass, HPG development, sperm quantity and viability were assessed. At all concentrations, drones were more exposed than workers due to higher food consumption. Increased body mass was observed in drones starting at 20 ng ml-1 and in workers at 100 ng ml-1. Furthermore, environmentally realistic concentrations (4.5-40 ng ml-1) did not significantly affect survival or consumption for either sex. However, thiamethoxam exposure significantly negatively affected both sperm viability and HPG development at all tested concentrations. Therefore, the results indicate a trade-off between survival and fitness components, possibly due to costly detoxification. Since sperm and HPG are corner stones of colony fitness, the data offer plausible mechanisms for bumblebee population declines. To adequately mitigate ongoing biodiversity declines for the eusocial insects, this study suggests it is essential to evaluate the impact of insecticides on fitness parameters of both sexuals and workers.


Assuntos
Inseticidas , Animais , Abelhas , Feminino , Humanos , Insetos , Inseticidas/toxicidade , Masculino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Reprodução , Espermatozoides , Tiametoxam
7.
Environ Pollut ; 284: 117106, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930781

RESUMO

The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g-1) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.


Assuntos
Ecossistema , Inseticidas , Animais , Abelhas , Feminino , Fertilidade , Inseticidas/toxicidade , Masculino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Tiametoxam , Tiazóis/toxicidade
8.
Insects ; 11(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233695

RESUMO

The ubiquitous use of pesticides is one major driver for the current loss of biodiversity, and the common practice of simultaneously applying multiple agrochemicals may further contribute. Insect toxicology currently has a strong focus on survival to determine the potential hazards of a chemical routinely used in risk evaluations. However, studies revealing no effect on survival or even indicating enhanced survival are likely to be misleading, if potential trade-offs between survival and other physiological factors are overlooked. Here, we used standard laboratory experiments to investigate the sublethal (i.e., food consumption) and lethal (i.e., survival) effects of two common agricultural pesticides (Roundup® and clothianidin) on adult female solitary bees, Osmia bicornis. The data showed no significant effect of the treatment on cumulative survival; however, a significant positive correlation between herbicide and insecticide exposure and age was revealed, i.e., bees exposed to higher dosages lived longer. As no significant differences in daily food consumption were observed across treatment groups, increased food intake can be excluded as a factor leading to the prolonged survival. While this study does not provide data on fitness effects, two previous studies using solitary bees observed significant negative effects of neonicotinoid insecticides on fitness, yet not on survival. Thus, we conjecture that the observed non-significant effects on longevity may result from a trade-off between survival and reproduction. The data suggest that a focus on survival can lead to false-negative results and it appears inevitable to include fitness or at least tokens of fitness at the earliest stage in future risk assessments.

10.
Sci Rep ; 10(1): 4667, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170145

RESUMO

Interactions between stressors are involved in the decline of wild species and losses of managed ones. Those interactions are often assumed to be synergistic, and per se of the same nature, even though susceptibility can vary within a single species. However, empirical measures of interaction effects across levels of susceptibility remain scarce. Here, we show clear evidence for extreme differences in stressor interactions ranging from antagonism to synergism within honeybees, Apis mellifera. While female honeybee workers exposed to both malnutrition and the pathogen Nosema ceranae showed synergistic interactions and increased stress, male drones showed antagonistic interactions and decreased stress. Most likely sex and division of labour in the social insects underlie these findings. It appears inevitable to empirically test the actual nature of stressor interactions across a range of susceptibility factors within a single species, before drawing general conclusions.


Assuntos
Antibiose , Comportamento Animal , Simbiose , Animais , Abelhas/parasitologia , Abelhas/fisiologia , Biodiversidade , Meio Ambiente , Interações Hospedeiro-Parasita , Nosema , Característica Quantitativa Herdável , Especificidade da Espécie , Estresse Fisiológico
11.
Int J Parasitol ; 49(8): 605-613, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31163178

RESUMO

The parasite Crithidia mellificae (Kinetoplastea: Trypanosomatidae) infects honeybees, Apis mellifera. No pathogenic effects have been found in individual hosts, despite positive correlations between infections and colony mortalities. The solitary bee Osmia cornuta might constitute a host, but controlled infections are lacking to date. Here, we challenged male and female O. cornuta and honeybee workers in laboratory cages with C. mellificae. No parasite cells were found in any control. Parasite numbers increased 6.6 fold in honeybees between days 6 and 19 p.i. and significantly reduced survival. In O. cornuta, C. mellificae numbers increased 2-3.6 fold within cages and significantly reduced survival of males, but not females. The proportion of infected hosts increased in O. cornuta cages with faeces, but not in honeybee cages without faeces, suggesting faecal - oral transmission. The data show that O. cornuta is a host of C. mellificae and suggest that males are more susceptible. The higher mortality of infected honeybees proposes a mechanism for correlations between C. mellificae infections and colony mortalities.


Assuntos
Criação de Abelhas , Abelhas/parasitologia , Crithidia/fisiologia , Análise de Variância , Animais , Animais Selvagens , Criação de Abelhas/métodos , Abelhas/anatomia & histologia , Tamanho Corporal , Diploide , Feminino , Haploidia , Estimativa de Kaplan-Meier , Masculino , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Trypanosomatina/fisiologia
12.
PLoS One ; 14(3): e0214597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921425

RESUMO

Reproductive strategies can act as strong selective forces on reproductive traits of male insects, resulting in species-specific variation in sperm quantity and viability. For solitary bees, basic measures of sperm quantity and viability are scarce. Here we evaluated for the first time quantity and viability of sperm in male Osmia cornuta solitary bees at different times after emergence, and how they were affected by male body mass and environmental condition (laboratory or semi-field arena). Sperm viability immediately after adult emergence showed no significant difference compared to four day old individuals, suggesting that O. cornuta males are capable of mating immediately post emergence. However, sperm counts were significantly higher in four day old individuals from the semi-field arena when compared to newly emerged males. This might reflect a final phase of sperm maturation. Regardless of individual male age and body mass differences, O. cornuta males produced on average ~175'000 spermatozoa that were ~65% viable, which are both significantly lower compared to eusocial honeybees and bumblebees. Moreover, sperm quantity, but not viability, was positively correlated with male body mass four days after emergence, while no such relationship was detected immediately after emergence. Even though individuals maintained in semi-field conditions exhibited a significantly greater loss of body mass, experimental arena had no significant effect on male survival, sperm quality or total living sperm produced. This suggests that the proposed laboratory design provides a cost-efficient and simple experimental approach to assess sperm traits in solitary bees. In conclusion, our data suggest a reduced investment in both sperm quantity and quality by male O. cornuta, which appears to be adaptive in light of the life history of this solitary bee.


Assuntos
Abelhas/citologia , Abelhas/fisiologia , Contagem de Espermatozoides , Animais , Abelhas/crescimento & desenvolvimento , Tamanho Corporal , Fertilidade , Masculino , Sobrevivência de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA