Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125775

RESUMO

Multimodality reporter gene imaging combines the sensitivity, resolution and translational potential of two or more signals. The approach has not been widely adopted by the animal imaging community, mainly because its utility in this area is unproven. We developed a new complementation-based reporter gene system where the large component of split NanoLuc luciferase (LgBiT) presented on the surface of cells (TM-LgBiT) interacts with a radiotracer consisting of the high-affinity complementary HiBiT peptide labeled with a radionuclide. Radiotracer uptake could be imaged in mice using SPECT/CT and bioluminescence within two hours of implanting reporter-gene-expressing cells. Imaging data were validated by ex vivo biodistribution studies. Following the demonstration of complementation between the TM-LgBiT protein and HiBiT radiotracer, we validated the use of the technology in the highly specific in vivo multimodal imaging of cells. These findings highlight the potential of this new approach to facilitate the advancement of cell and gene therapies from bench to clinic.


Assuntos
Genes Reporter , Luciferases , Animais , Camundongos , Luciferases/metabolismo , Luciferases/genética , Humanos , Distribuição Tecidual , Imagem Óptica/métodos , Medições Luminescentes/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cintilografia/métodos , Linhagem Celular Tumoral
2.
Front Immunol ; 14: 1285923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035094

RESUMO

Intra-operative fluorescence imaging has demonstrated its ability to improve tumor lesion identification. However, the limited tissue penetration of the fluorescent signals hinders the detection of deep-lying or occult lesions. Integrating fluorescence imaging with SPECT and/or intra-operative gamma-probing synergistically combines the deep tissue penetration of gamma rays for tumor localization with the precision of fluorescence imaging for precise tumor resection. In this study, we detail the use of a genetically encoded multifunctional handle, henceforth referred to as a GEM-handle, for the development of fluorescent/radioactive bimodal single-domain antibody (sdAb)-based tracers. A sdAb that targets the urokinase plasminogen activator receptor (uPAR) was engineered to carry a GEM-handle containing a carboxy-terminal hexahistidine-tag and cysteine-tag. A two-step labeling strategy was optimized and applied to site-specifically label IRDye800CW and 99mTc to the sdAb. Bimodal labeling of the sdAbs proved straightforward and successful. 99mTc activity was however restricted to 18.5 MBq per nmol fluorescently-labeled sdAb to prevent radiobleaching of IRDye800CW without impeding SPECT/CT imaging. Subsequently, the in vivo biodistribution and tumor-targeting capacity of the bimodal tracer were evaluated in uPAR-positive tumor-bearing mice using SPECT/CT and fluorescence imaging. The bimodal sdAb showed expected renal background signals due to tracer clearance, along with slightly elevated non-specific liver signals. Four hours post-injection, both SPECT/CT and fluorescent images achieved satisfactory tumor uptake and contrast, with significantly higher values observed for the anti-uPAR bimodal sdAb compared to a control non-targeting sdAb. In conclusion, the GEM-handle is a convenient method for designing and producing bimodal sdAb-based tracers with adequate in vivo characteristics.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Corantes Fluorescentes , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias/diagnóstico por imagem
3.
Front Pharmacol ; 14: 1266288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781693

RESUMO

Introduction: Surgical resection is one of the main treatment options for several types of cancer, the desired outcome being complete removal of the primary tumor and its local metastases. Any malignant tissue that remains after surgery may lead to relapsing disease, negatively impacting the patient's quality of life and overall survival. Fluorescence imaging in surgical oncology aims to facilitate full resection of solid tumors through the visualization of malignant tissue during surgery, following the administration of a fluorescent contrast agent. An important class of targeting molecules are Nanobodies® (Nbs), small antigen-binding fragments derived from camelid heavy chain only antibodies. When coupled with a fluorophore, Nbs can bind to a specific receptor and demarcate tumor margins through a fluorescence camera, improving the accuracy of surgical intervention. A widely investigated target for fluorescence-guided surgery is the epidermal growth factor receptor (EGFR), which is overexpressed in several types of tumors. Promising results with the fluorescently labeled anti-EGFR Nb 7D12-s775z in murine models motivated a project employing the compound in a pioneering study in dogs with spontaneous cancer. Methods: To determine the safety profile of the study drug, three healthy purpose-bred dogs received an intravenous injection of the tracer at 5.83, 11.66, and 19.47 mg/m2, separated by a 14-day wash-out period. Physical examination and fluorescence imaging were performed at established time points, and the animals were closely monitored between doses. Blood and urine values were analyzed pre- and 24 h post administration. Results: No adverse effects were observed, and blood and urine values stayed within the reference range. Images of the oral mucosa, acquired with a fluorescence imaging device (Fluobeam®), suggest rapid clearance, which was in accordance with previous in vivo studies. Discussion: These are the first results to indicate that 7D12-s775z is well tolerated in dogs and paves the way to conduct clinical trials in canine patients with EGFR-overexpressing spontaneous tumors.

4.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205609

RESUMO

PURPOSE: To assess our improved NACA for the detection of tumor necrosis. METHODS: We increased the blood circulation time of our NACA by adding an albumin-binding domain to the molecular structure. We tested the necrosis avidity on dead or alive cultured cells and performed SPECT and fluorescence imaging of both spontaneous and treatment-induced necrosis in murine breast cancer models. We simultaneously recorded [18F]FDG-PET and bioluminescence images for complementary detection of tumor viability. RESULTS: We generated two albumin-binding IRDye800CW derivatives which were labeled with indium-111 with high radiochemical purity. Surprisingly, both albumin-binding NACAs had >10x higher in vitro binding towards dead cells. We selected [111In]3 for in vivo experiments which showed higher dead cell binding in vitro and in vivo stability. The doxorubicin-treated tumors showed increased [111In]3-uptake (1.74 ± 0.08%ID/g after saline treatment, 2.25 ± 0.16%ID/g after doxorubicin treatment, p = 0.044) and decreased [18F]FDG-uptake (3.02 ± 0.51%ID/g after saline treatment, 1.79 ± 0.11%ID/g after doxorubicin treatment, p = 0.040), indicating therapy efficacy. Moreover, we detected increased [111In]3-uptake and tumor necrosis in more rapidly growing EMT6 tumors. CONCLUSIONS: Our albumin-binding NACA based on IRDye800CW facilitates tumor-necrosis imaging for assessment of therapy efficacy and aggressiveness in solid tumors using both fluorescence and SPECT imaging.

5.
EJNMMI Res ; 11(1): 47, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970376

RESUMO

BACKGROUND: There is a growing body of nuclear contrast agents that are repurposed for fluorescence-guided surgery. New contrast agents are obtained by substituting the radioactive tag with, or adding a fluorescent cyanine to the molecular structure of antibodies or peptides. This enables intra-operative fluorescent detection of cancerous tissue, leading to more complete tumor resection. However, these fluorescent cyanines can have a remarkable influence on pharmacokinetics and tumor uptake, especially when labeled to smaller targeting vectors such as peptides. Here we demonstrate the effect of cyanine-mediated dead cell-binding of Ac-Lys0(IRDye800CW)-Tyr3-octreotate (800CW-TATE) and how this can be used as an advantage for fluorescence-guided surgery. RESULTS: Binding of 800CW-TATE could be blocked with DOTA0-Tyr3-octreotate (DOTA-TATE) on cultured SSTR2-positive U2OS cells and was absent in SSTR2 negative U2OS cells. However, strong binding was observed to dead cells, which could not be blocked with DOTA-TATE and was also present in dead SSTR2 negative cells. No SSTR2-mediated binding was observed in frozen tumor sections, possibly due to disruption of the cells in the process of sectioning the tissue before exposure to the contrast agent. DOTA-TATE blocking resulted in an incomplete reduction of 61.5 ± 5.8% fluorescence uptake by NCI-H69-tumors in mice. Near-infrared imaging and dead cell staining on paraffin sections from resected tumors revealed that fluorescence uptake persisted in necrotic regions upon blocking with DOTA-TATE. CONCLUSION: This study shows that labeling peptides with cyanines can result in dead cell binding. This does not hamper the ultimate purpose of fluorescence-guided surgery, as necrotic tissue appears in most solid tumors. Hence, the necrosis binding can increase the overall tumor uptake. Moreover, necrotic tissue should be removed as much as possible: it cannot be salvaged, causes inflammation, and is tumorigenic. However, when performing binding experiments to cells with disrupted membrane integrity, which is routinely done with nuclear probes, this dead cell-binding can resemble non-specific binding. This study will benefit the development of fluorescent contrast agents.

7.
J Neurooncol ; 153(2): 211-222, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33768405

RESUMO

PURPOSE: Meningioma recurrence rates can be reduced by optimizing surgical resection with the use of intraoperative molecular fluorescence guided surgery (MFGS). We evaluated the potential of the fluorescent tracer 800CW-TATE for MFGS using in vitro and in vivo models. It targets somatostatin receptor subtype 2 (SSTR2), which is overexpressed in all meningiomas. METHODS: Binding affinity of 800CW-TATE was evaluated using [177Lu] Lu-DOTA-Tyr3-octreotate displacement assays. Tumor uptake was determined by injecting 800CW-TATE in (SSTR2-positive) NCI-H69 or (SSTR2-negative) CH-157MN xenograft bearing mice and FMT2500 imaging. SSTR2-specific binding was measured by comparing tumor uptake in NCI-H69 and CH-157MN xenografts, blocking experiments and non-targeted IRDye800CW-carboxylate binding. Tracer distribution was analyzed ex vivo, and the tumor-to-background ratio (TBR) was calculated. SSTR2 expression was determined by immunohistochemistry (IHC). Lastly, 800CW-TATE was incubated on frozen and fresh meningioma specimens and analyzed by microscopy. RESULTS: 800CW-TATE binding affinity assays showed an IC50 value of 72 nM. NCI-H69 xenografted mice showed a TBR of 21.1. 800CW-TATE detection was reduced after co-administration of non-fluorescent DOTA-Tyr3-octreotate or administration of IRDye800CW. CH-157MN had no tumor specific tracer staining due to absence of SSTR2 expression, thereby serving as a negative control. The tracer bound specifically to SSTR2-positive meningioma tissues representing all WHO grades. CONCLUSION: 800CW-TATE demonstrated sufficient binding affinity, specific SSTR2-mediated tumor uptake, a favorable biodistribution, and high TBR. These features make this tracer very promising for use in MFGS and could potentially aid in safer and a more complete meningioma resection, especially in high-grade meningiomas or those at complex anatomical localizations.


Assuntos
Neoplasias Meníngeas , Meningioma , Animais , Fluorescência , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
8.
Contrast Media Mol Imaging ; 2021: 2853522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987318

RESUMO

Necrosis only occurs in pathological situations and is directly related to disease severity and, therefore, is an important biomarker. Tumor necrosis occurs in most solid tumors due to improperly functioning blood vessels that cannot keep up with the rapid growth, especially in aggressively growing tumors. The amount of necrosis per tumor volume is often correlated to rapid tumor proliferation and can be used as a diagnostic tool. Furthermore, efficient therapy against solid tumors will directly or indirectly lead to necrotic tumor cells, and detection of increased tumor necrosis can be an early marker for therapy efficacy. We propose the application of necrosis avid contrast agents to detect therapy-induced tumor necrosis. Herein, we advance gallium-68-labeled IRDye800CW, a near-infrared fluorescent dye that exhibits excellent necrosis avidity, as a potential PET tracer for in vivo imaging of tumor necrosis. We developed a reliable labeling procedure to prepare [68Ga]Ga-DOTA-PEG4-IRDye800CW ([68Ga]Ga-1) with a radiochemical purity of >96% (radio-HPLC). The prominent dead cell binding of fluorescence and radioactivity from [68Ga]Ga-1 was confirmed with dead and alive cultured 4T1-Luc2 cells. [68Ga]Ga-1 was injected in 4T1-Luc2 tumor-bearing mice, and specific fluorescence and PET signal were observed in the spontaneously developing tumor necrosis. The ip injection of D-luciferin enabled simultaneous bioluminescence imaging of the viable tumor regions. Tumor necrosis binding was confirmed ex vivo by colocalization of fluorescence uptake with TUNEL dead cell staining and radioactivity uptake in dichotomized tumors and frozen tumor sections. Our presented study shows that [68Ga]Ga-1 is a promising PET tracer for the detection of tumor necrosis.


Assuntos
Meios de Contraste , Radioisótopos de Gálio , Animais , Linhagem Celular Tumoral , Camundongos , Necrose/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
9.
Mol Imaging Biol ; 22(5): 1333-1341, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514888

RESUMO

PURPOSE: Current clinical measurements for tumor treatment efficiency rely often on changes in tumor volume measured as shrinkage by CT or MRI, which become apparent after multiple lines of treatment and pose a physical and psychological burden on the patient. Detection of therapy-induced cell death in the tumor can be a fast measure for treatment efficiency. However, there are no reliable clinical tools for detection of tumor necrosis. Previously, we studied the necrosis avidity of cyanine-based fluorescent dyes, which suffered long circulation times before tumor necrosis could be imaged due to low hydrophilicity. We now present the application of radiolabeled 800CW, a commercially available cyanine with high hydrophilicity, to image tumor necrosis in a mouse model. PROCEDURES: We conjugated 800CW to DOTA via a PEG linker, for labeling with single-photon emission-computed tomography isotope indium-111, yielding [111In]In-DOTA-PEG4-800CW. We then investigated specific [111In]In-DOTA-PEG4-800CW uptake by dead cells in vitro, using both fluorescence and radioactivity as detection modalities. Finally, we investigated [111In]In-DOTA-PEG4-800CW uptake into necrotic tumor regions of a 4T1 breast tumor model in mice. RESULTS: We successfully prepared a precursor and developed a reliable procedure for labeling 800CW with indium-111. We detected specific [111In]In-DOTA-PEG4-800CW uptake by dead cells, using both fluorescence and radioactivity. Albeit with a tumor uptake of only 0.37%ID/g at 6 h post injection, we were able to image tumor necrosis with a tumor to background ratio of 7:4. Fluorescence and radioactivity in cryosections from the dissected tumors were colocalized with tumor necrosis, confirmed by TUNEL staining. CONCLUSIONS: [111In]In-DOTA-PEG4-800CW can be used to image tumor necrosis in vitro and in vivo. Further research will elucidate the application of [111In]In-DOTA-PEG4-800CW or other radiolabeled hydrophilic cyanines for the detection of necrosis caused by chemotherapy or other anti-cancer therapies. This can provide valuable prognostic information in treatment of solid tumors.


Assuntos
Meios de Contraste/química , Radioisótopos de Índio/química , Indóis/química , Coloração e Rotulagem , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Indóis/síntese química , Camundongos Endogâmicos BALB C , Camundongos Nus , Necrose , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
10.
Cell Chem Biol ; 26(9): 1214-1228.e25, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31303578

RESUMO

Cancer cells sustain growth by altering their metabolism to accelerated aerobic glycolysis accompanied by increased glucose demand and employ glutamine as additional nutrient source. This metabolic adaptation induces upregulation of glucose transporters GLUT-1 and -3, and simultaneous targeting of both transporters and of glutamine metabolism may offer a promising approach to inhibit cancer cell growth. We describe the discovery of the very potent glucose uptake inhibitor Glutor, which targets glucose transporters GLUT-1, -2, and -3, attenuates glycolytic flux and potently and selectively suppresses growth of a variety of cancer cell lines. Co-treatment of colon cancer cells with Glutor and glutaminase inhibitor CB-839 very potently and synergistically inhibits cancer cell growth. Such a dual inhibition promises to be particularly effective because it targets the metabolic plasticity as well as metabolic rescue mechanisms in cancer cells.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glutaminase/metabolismo , Benzenoacetamidas/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 3/metabolismo , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Masculino , Neoplasias/metabolismo , Tiadiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA