Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Virol ; 97(11): e0164622, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916834

RESUMO

IMPORTANCE: Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A , Proteínas do Nucleocapsídeo , Proteínas da Matriz Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana , Proteínas da Matriz Viral/imunologia , Proteínas do Nucleocapsídeo/imunologia
2.
J Virol ; 97(10): e0105723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800945

RESUMO

IMPORTANCE: Vaccines that can slow respiratory virus transmission in the population are urgently needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Here, we describe how a recombinant neuraminidase-based influenza virus vaccine reduces transmission in vaccinated guinea pigs in an exposure intensity-based manner.


Assuntos
Vacinas contra Influenza , Neuraminidase , Infecções por Orthomyxoviridae , Animais , Cobaias , Anticorpos Antivirais , Vírus da Influenza B , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes , Vacinação
3.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506693

RESUMO

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Neuraminidase , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/metabolismo , Neuraminidase/química , Neuraminidase/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Microscopia Crioeletrônica , Epitopos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Modelos Animais de Doenças
4.
J Virol ; 97(3): e0166422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779758

RESUMO

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Estações do Ano , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteção Cruzada/imunologia
5.
J Virol ; 97(1): e0107022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533948

RESUMO

Current influenza virus vaccines have to be closely matched to circulating strains to provide good protection, and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding breadth of these antibodies with commonly used immunological methods can be challenging. Here, we analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a large number of group 1 hemagglutinins but also group 2 and influenza B virus hemagglutinins. In CVIA057, different vaccine modalities, including a live attenuated influenza virus vaccine and inactivated influenza virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to induce. IMPORTANCE The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic, or emerging pandemic influenza viruses would be an extremely useful public health tool. Here, we test a technology designed to measure the breadth of antibody responses induced by this new class of vaccines.


Assuntos
Reações Cruzadas , Vacinas contra Influenza , Influenza Humana , Humanos , Adjuvantes Imunológicos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza B , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vírus da Influenza A
6.
Nat Commun ; 13(1): 7864, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543789

RESUMO

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Domínio Catalítico/imunologia , Domínio Catalítico/fisiologia , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Neuraminidase/química , Neuraminidase/imunologia
7.
Proc Natl Acad Sci U S A ; 119(45): e2206333119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322769

RESUMO

Combined vaccine formulations targeting not only hemagglutinin but also other influenza virus antigens could form the basis for a universal influenza virus vaccine that has the potential to elicit long-lasting, broadly cross-reactive immune responses. Lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) vaccines can be utilized to efficiently target multiple antigens with a single vaccine. Here, we assessed the immunogenicity and protective efficacy of nucleoside-modified mRNA-LNP vaccines that contain four influenza A group 2 virus antigens (hemagglutinin stalk, neuraminidase, matrix protein 2, and nucleoprotein) in mice. We found that all vaccine components induced antigen-specific cellular and humoral immune responses after administration of a single dose. While the monovalent formulations were not exclusively protective, the combined quadrivalent formulation protected mice from all challenge viruses, including a relevant H1N1 influenza virus group 1 strain, with minimal weight loss. Importantly, the combined vaccine protected from morbidity at a dose of 125 ng per antigen after a single vaccination in mice. With these findings, we confidently conclude that the nucleoside-modified mRNA-LNP platform can be used to elicit protection against a large panel of influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Nucleosídeos , Hemaglutininas , Vacinas Combinadas , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas de mRNA
8.
bioRxiv ; 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36299418

RESUMO

Mucosal vaccines and vaccines that block pathogen transmission are under-appreciated in vaccine development. However, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has shown that blocking viral transmission is an important attribute of efficient vaccines. Here, we investigated if recombinant influenza virus neuraminidase (NA) vaccines delivered at a mucosal site could protect from onward transmission of influenza B viruses in the guinea pig model. We tested four different scenarios in which sequential transmission was investigated in chains of four guinea pigs. The variables tested included a low and a high viral inoculum (104 vs 105 plaque forming units) in the initial donor guinea pig and variation of exposure/cohousing time (1 day vs 6 days). In three out of four scenarios - low inoculum-long exposure, low inoculum-short exposure and high inoculum-short exposure - transmission chains were efficiently blocked. Based on this data we believe an intranasal recombinant NA vaccine could be used to efficiently curtail influenza virus spread in the human population during influenza epidemics.

9.
Front Immunol ; 13: 944907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967389

RESUMO

Influenza A viruses are a diverse species that include 16 true hemagglutinin (HA) subtypes and 9 true neuraminidase (NA) subtypes. While the antigenicity of many HA subtypes is reasonably well studied, less is known about NA antigenicity, especially when it comes to non-human subtypes that only circulate in animal reservoirs. The N6 subtype NAs are mostly found in viruses infecting birds. However, they have also been identified in viruses that infect mammals, such as swine and seals. More recently, highly pathogenic H5N6 subtype viruses have caused rare infections and mortality in humans. Here, we generated murine mAbs to the N6 NA, characterized their breadth and antiviral properties in vitro and in vivo and mapped their epitopes by generating escape mutant viruses. We found that the antibodies had broad reactivity across the American and Eurasian N6 lineages, but relatively little binding to the H5N6 NA. Several of the antibodies exhibited strong NA inhibition activity and some also showed activity in the antibody dependent cellular cytotoxicity reporter assay and neutralization assay. In addition, we generated escape mutant viruses for six monoclonal antibodies and found mutations on the lateral ridge of the NA. Lastly, we observed variable protection in H4N6 mouse challenge models when the antibodies were given prophylactically.


Assuntos
Antineoplásicos Imunológicos , Vírus da Influenza A , Animais , Anticorpos Monoclonais/farmacologia , Hemaglutininas , Mamíferos , Camundongos , Neuraminidase , Suínos
10.
NPJ Vaccines ; 7(1): 103, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042229

RESUMO

Current seasonal and pre-pandemic influenza vaccines induce short-lived predominantly strain-specific and limited heterosubtypic responses. To better understand how vaccine adjuvants AS03 and MF59 may provide improved antibody responses to vaccination, we interrogated serum from subjects who received 2 doses of inactivated monovalent influenza A/Indonesia/05/2005 vaccine with or without AS03 or MF59 using hemagglutinin (HA) microarrays (NCT01317758 and NCT01317745). The arrays were designed to reflect both full-length and globular head HA derived from 17 influenza A subtypes (H1 to H16 and H18) and influenza B strains. We observed significantly increased strain-specific and broad homo- and heterosubtypic antibody responses with both AS03 and MF59 adjuvanted vaccination with AS03 achieving a higher titer and breadth of IgG responses relative to MF59. The adjuvanted vaccine was also associated with the elicitation of stalk-directed antibody. We established good correlation of the array antibody responses to H5 antigens with standard HA inhibition and microneutralization titers.

11.
Nat Commun ; 13(1): 4677, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945226

RESUMO

Messenger RNA (mRNA) vaccines represent a new, effective vaccine platform with high capacity for rapid development. Generation of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is a necessity for reducing influenza-associated morbidity and mortality. Here we focus on the development of a universal influenza B virus vaccine based on the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform. We evaluate vaccine candidates based on different target antigens that afford protection against challenge with ancestral and recent influenza B viruses from both antigenic lineages. A pentavalent vaccine combining all tested antigens protects mice from morbidity at a very low dose of 50 ng per antigen after a single vaccination. These findings support the further advancement of nucleoside-modified mRNA-LNPs expressing multiple conserved antigens as universal influenza virus vaccine candidates.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B/genética , Lipossomos , Camundongos , Nanopartículas , Nucleosídeos , RNA Mensageiro/genética , Vacinas Combinadas , Vacinas Sintéticas , Vacinas de mRNA
12.
NPJ Vaccines ; 7(1): 81, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869085

RESUMO

Influenza virus infections pose a significant threat to global health. Vaccination is the main countermeasure against influenza virus spread, however, the effectiveness of vaccines is variable. Current seasonal influenza virus vaccines mostly rely on the immunodominant hemagglutinin (HA) glycoprotein on the viral surface, which usually leads to a narrow and strain-specific immune response. The HA undergoes constant antigenic drift, which can lead to a dramatic loss in vaccine effectiveness, requiring the annual reformulation and readministration of influenza virus vaccines. Recently, it has been demonstrated that the subdominant glycoprotein, neuraminidase (NA), is an attractive target for vaccine development. Here, we tested a newly developed recombinant influenza virus N1 neuraminidase vaccine candidate, named N1-MPP, adjuvanted with CpG 1018, a TLR9 agonist. Additionally, N2-MPP and B-NA-MPP vaccine constructs have been generated to cover the range of influenza viruses that are seasonally circulating in humans. These constructs have been characterized in vitro and in vivo regarding their functionality and protective potential. Furthermore, a trivalent NA-MPP mix was tested. No antigenic competition between the individual NA constructs was detected. By adjuvating the recombinant protein constructs with CpG 1018 it was possible to induce a strong and robust immune response against the NA, which provided full protection against morbidity and mortality after high lethal challenges in vivo. This study provides important insights for the development of a broadly protective NA-based influenza virus vaccine candidate.

13.
Sci Rep ; 12(1): 9198, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654904

RESUMO

The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Imunoglobulina G/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C
15.
EBioMedicine ; 78: 103972, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35366624

RESUMO

BACKGROUND: A major challenge of the SARS-CoV-2 pandemic is to better define "protective thresholds" to guide the global response. We aimed to characterize the longitudinal dynamics of the antibody responses in naturally infected individuals in Chile and compared them to humoral responses induced after immunization with CoronaVac-based on an inactivated whole virus -or the BNT162b2- based on mRNA-vaccines. We also contrasted them with the respective effectiveness and efficacy data available for both vaccines. METHODS: We determined and compared the longitudinal neutralizing (nAb) and anti-nucleocapsid (anti-N) antibody responses of 74 COVID-19 individuals (37 outpatient and 37 hospitalized) during the acute disease and convalescence. We also assessed the antibody boosting of 36 of these individuals who were immunized after convalescence with either the CoronaVac (n = 30) or the BNT162b2 (n = 6) vaccines. Antibody titres were also measured for 50 naïve individuals immunized with two doses of CoronaVac (n = 35) or BNT162b2 (n = 15) vaccines. The neutralizing level after vaccination was compared to those of convalescent individuals and the predicted efficacy was estimated. FINDINGS: SARS-CoV-2 infection induced robust nAb and anti-N antibody responses lasting >9 months, but showing a rapid nAb decay. After convalescence, nAb titres were significantly boosted by vaccination with CoronaVac or BNT162b2. In naïve individuals, the calculated mean titre induced by two doses of CoronaVac or BNT162b2 was 0·2 times and 5.2 times, respectively, that of convalescent individuals, which has been proposed as threshold of protection. CoronaVac induced no or only modest anti-N antibody responses. Using two proposed logistic models, the predicted efficacy of BNT162b2 was estimated at 97%, in close agreement with phase 3 efficacy studies, while for CoronaVac it was ∼50% corresponding to the lowest range of clinical trials and below the real-life data from Chile (from February 2 through May 1, 2021 during the predominant circulation of the Gamma variant), where the estimated vaccine effectiveness to prevent COVID-19 was 62·8-64·6%. INTERPRETATION: The decay of nAbs titres in previously infected individuals over time indicates that vaccination is needed to boost humoral memory responses. Immunization of naïve individuals with two doses of CoronaVac induced nAbs titres that were significantly lower to that of convalescent patients, and similar to vaccination with one dose of BTN162b2. The real life effectiveness for CoronaVac in Chile was higher than estimated; indicating that lower titres and additional cellular immune responses induced by CoronaVac might afford protection in a highly immunized population. Nevertheless, the lower nAb titre induced by two doses of CoronaVac as compared to the BTN162b2 vaccine in naïve individuals, highlights the need of booster immunizations over time to maintain protective levels of antibody, particularly with the emergence of new SARS-CoV-2 variants. FUNDING: FONDECYT 1161971, 1212023, 1181799, FONDECYT Postdoctorado 3190706 and 3190648, ANID Becas/Doctorado Nacional 21212258, PIA ACT 1408, CONICYT REDES180170, Centro Ciencia & Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia grants from the Agencia Nacional de Investigación y Desarrollo (ANID) of Chile; NIH-NIAD grants U19AI135972, R01AI132633 and contracts HHSN272201400008C and 75N93019C00051; the JPB Foundation, the Open Philanthropy Project grant 2020-215611 (5384); and by anonymous donors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Convalescença , Humanos
16.
Vaccine ; 40(11): 1624-1633, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293159

RESUMO

To determine if biological sex and age intersect to affect universal influenza vaccine-induced immunity, adult and aged male and female C57BL/6 mice were sequentially immunized with a chimeric-hemagglutinin (cHA) stalk-based H1 vaccine. Adult mice developed greater quantity and quality of H1-stalk antibodies, that were more cross-reactive with other group 1, but not group 2, influenza viruses, than aged mice. The vaccine did not induce neutralizing or hemagglutination inhibition antibodies, but rather antibody-dependent cellular cytotoxicity, which was greater in adult than aged mice. Vaccinated adult mice were better protected than aged mice after challenge with 2009 H1N1 virus, experiencing less morbidity and having lower pulmonary virus titers. The age-associated decline in immunity and protection was consistently greater among females than males, with the reduction in immunity and protection for aged as compared with adult females often being the sole comparison driving the overall age-associated significant differences. The age-associated reduction in stalk-based immunity in females was not, however, associated with changes in estradiol. To determine if the better antibodies in adults could be utilized to protect aged mice, serum was passively transferred from vaccinated adult mice into naïve sex-matched aged mice. Even with transferred serum from young adult mice, aged females still suffered greater morbidity than aged males. These data suggest there are sex-dependent effects of aging on cHA-based universal influenza virus vaccine-induced immunity that cannot be reversed through transfer of serum from young animals. The lack of consideration of sex-specific effects of aging on immunity could hinder efforts toward universal vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Fatores Etários , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Fatores Sexuais
17.
Nature ; 602(7896): 314-320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942633

RESUMO

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/química , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células B de Memória/imunologia
18.
PLoS Biol ; 19(12): e3001384, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914685

RESUMO

Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Reações Cruzadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
19.
Sci Immunol ; 6(66): eabj5129, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890255

RESUMO

Antibodies secreted at the mucosal surface play an integral role in immune defense by serving to neutralize the pathogen and promote its elimination at the site of entry. Secretory immunoglobulin A (IgA) is a predominant Ig isotype at mucosal surfaces whose epithelial cells express polymeric Ig receptor capable of transporting dimeric IgA to the lumen. Although the role of IgA in intestinal mucosa has been extensively studied, the cell types responsible for secreting the IgA that protects the host against pathogens in the lower respiratory tract are less clear. Here, using a mouse model of influenza virus infection, we demonstrate that intranasal, but not systemic, immunization induces local IgA secretion in the bronchoalveolar space. Using single-cell RNA sequencing, we found a heterogeneous population of IgA-expressing cells within the respiratory mucosa, including tissue-resident memory B cells, plasmablasts, and plasma cells. IgA-secreting cell establishment within the lung required CXCR3. An intranasally administered protein-based vaccine also led to the establishment of IgA-secreting cells in the lung, but not when given intramuscularly or intraperitoneally. Last, local IgA secretion correlated with superior protection against secondary challenge with homologous and heterologous virus infection than circulating antibodies alone. These results provide key insights into establishment of protective immunity in the lung based on tissue-resident IgA-secreting B cells and inform vaccine strategies designed to elicit highly effective immune protection against respiratory virus infections.


Assuntos
Antivirais/imunologia , Linfócitos B/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulina A Secretora/imunologia , Vacinas contra Influenza/imunologia , Pulmão/imunologia , Administração Intranasal , Animais , Antivirais/administração & dosagem , Feminino , Imunoglobulina A Secretora/administração & dosagem , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Pulmão/virologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34852217

RESUMO

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Assuntos
Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de mRNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adjuvantes Imunológicos , Animais , Células HEK293 , Humanos , Imunidade Humoral , Interleucina-6/genética , Interleucina-6/metabolismo , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Subunidades Proteicas/genética , Vacinas de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA