Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 101(3): 284-289, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31958050

RESUMO

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, ß- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.


Assuntos
Alphaherpesvirinae/metabolismo , Betaherpesvirinae/metabolismo , Fibroblastos/metabolismo , Gammaherpesvirinae/metabolismo , Infecções por Herpesviridae/metabolismo , Linfócitos/metabolismo , Proteínas Quinases/metabolismo , Replicação Viral/fisiologia , Células Cultivadas , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Regulação para Cima
2.
Int J Biol Macromol ; 136: 521-530, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158418

RESUMO

The provisioning of compound libraries with a high degree of diversity and attractive pharmacological properties is a limiting step in drug development. This study reports the production of highly bioactive sulfated polysaccharides, originally present in a nonsulfated, dormant state in natural sources, and demonstrates their antiviral activity (human cytomegalovirus EC50 values of 2.34-7.77 µg/mL) at a low degree of cytotoxicity. Furthermore, data strongly suggested the inhibition of virus entry as the main mode of antiviral action. Remarkably, the utilized oleum-DMF reagent was able to generate a range of sulfated polysaccharides from various natural sources, possessing varying saccharide compositions, degrees of sulfation (0.4-1.7) and molecular masses (38-94,000 g/mol). Typically, in a matter of minutes, this reagent not only solubilized polysaccharides but also chemically converted their hydroxyl functionality into sulfates. The most active sulfated polysaccharide (EC50 of 2.62 µg/mL) proved to be a 94,000 g/mol branched glucan with sulfates at C-6/C-3,6/C-2,3,6 positions. In conclusion, the important determinants of such compounds' antiviral activity are: (i) degree of sulfation, (ii) molecular mass and (iii) structural features. Thus, our approach offers a huge prospect for the improvement of natural source-derived libraries based on biologically active polysaccharides with diversified chemical profiles.


Assuntos
Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos/química , Antivirais/isolamento & purificação , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Glicosilação , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Humanos , Peso Molecular , Plantas/química , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
3.
Antiviral Res ; 159: 84-94, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268914

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen with seropositivity rates in the adult population ranging between 40% and 95%. HCMV infection is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Current standard therapy with valganciclovir has the disadvantage of adverse side effects and viral drug resistance. A novel anti-HCMV drug, letermovir, has been approved recently, so that improved therapy options are available. Nevertheless, even more so far unexploited classes of compounds and molecular modes of action will be required for a next generation of antiherpesviral treatment strategies. In this study, we focused on the analysis of the antiviral potency of a novel class of compounds, i.e. pyrrolopyridine analogs, and identified both hit compounds and their target protein candidates. In essence, we provide novel evidence as follows: (i) screening hit SC88941 is highly active in inhibiting HCMV replication in primary human fibroblasts with an EC50 value of 0.20 ±â€¯0.01 µM in the absence of cytotoxicity, (ii) inhibition occurs at the early-late stage of viral protein production and shows reinforcing effects upon LMV cotreatment, (iii) among the viruses analyzed, antiviral activity was most pronounced against ß-herpesviruses (HCMV, HHV-6A) and intermediate against adenovirus (HAdV-2), (iv) induction of SC88941 resistance was not detectable, thus differed from the induction of ganciclovir resistance, (v) a linker-coupled model compound was used for mass spectrometry-based target identification, thus yielding several drug-binding target proteins and (vi) a first confocal imaging approach used for addressing intracellular effects of SC88941 indicated qualitative and quantitative alteration of viral protein expression and localization. Thus, our findings suggest a multifaceted pattern of compound-target binding in connection with an unusual mode of action, opening up further opportunities of antiviral drug development.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Virais/metabolismo , Adenoviridae/efeitos dos fármacos , Antivirais/síntese química , Descoberta de Drogas , Farmacorresistência Viral , Fibroblastos/virologia , Herpesviridae/efeitos dos fármacos , Humanos , Espectrometria de Massas , Orthomyxoviridae/efeitos dos fármacos , Pirimidinas/síntese química , Pirróis/síntese química , Replicação Viral/efeitos dos fármacos
4.
Viruses ; 10(1)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342872

RESUMO

The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.


Assuntos
Capsídeo/fisiologia , Citomegalovirus/enzimologia , Citomegalovirus/fisiologia , Membrana Nuclear/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citomegalovirus/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Membrana Nuclear/ultraestrutura , Lâmina Nuclear/ultraestrutura , Lâmina Nuclear/virologia , Fosforilação , Proteínas Virais/metabolismo , Montagem de Vírus , Liberação de Vírus , Replicação Viral
5.
J Gen Virol ; 98(10): 2569-2581, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28949903

RESUMO

Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Transporte Ativo do Núcleo Celular , Proteína Quinase CDC2 , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Humanos , Espectrometria de Massas , Fosforilação , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA