Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Methods ; 15(39): 5218-5224, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37781887

RESUMO

The analysis of individual particles with complex morphologies from light scattering is crucial in disperse systems studies, such as blood cells. Characterization, which assumes determining particle characteristics, has a higher likelihood of succeeding in solving the inverse light-scattering problem if an instrument provides enough light-scattering data. In this study, we demonstrate how we extend the operating angular interval for the 4π Scanning Flow Cytometer (4πSFC), which measures angle-resolved light-scattering profiles (LSPs) of individual particles. The angular interval is extended by additionally measuring light scattering for the backward hemisphere. Currently, the 4πSFC setup uses three lasers, a single optical cell, and three photomultipliers. It enables the measurement of the LSP of individual particles within the angular interval of 10 to 170° for polar angles with integration over azimuth angles, which covers the spatial angle of 98.5% of the 4π angle. We demonstrate the 4πSFC's performance in measuring LSPs from the analysis of polymer beads, mature and spherized erythrocytes, and platelets. The 4πSFC has the potential to be very useful in identifying platelet dimers and granulocytes without labels, characterizing lymphocytes, monocytes, and abnormal erythrocytes.


Assuntos
Plaquetas , Luz , Citometria de Fluxo , Espalhamento de Radiação , Granulócitos
2.
J Immunol Methods ; 521: 113555, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666317

RESUMO

For the quantitative determination of cell receptors by fluorescence flow cytometry, we proposed a new method, which takes into account the reaction kinetics. The binding reaction of the ligand with receptors begins after placing the cells in the ligand solution. In the proposed method, there are several samples with the same concentration of cells and different initial concentrations of fluorescently labeled ligand, and each sample is measured by a flow cytometer once at the time when the following condition is met: the product of the incubation time (cells with ligand) and the initial concentration of ligand is the same for all samples. The proposed approach eliminates disadvantages and combines advantages of both kinetic and titration methods for quantification of receptors on single cells without the use of traditional calibration fluorescent beads. Practical application of the method was demonstrated in quantification of CD8 and CD14 on peripheral blood human leukocytes. Particularly, we found decreased (by a factor of two) mean number of CD14 on monocytes and granulocytes in patients with atherosclerosis (treated in the hospital) compared to conditionally healthy donors, whereas no difference was found in the mean CD8 expression on leukocytes between the same patient and donor groups.


Assuntos
Leucócitos , Receptores de Superfície Celular , Humanos , Ligantes , Citometria de Fluxo , Cinética
3.
Cytometry A ; 103(9): 736-743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306103

RESUMO

Ultraviolet lasers are commonly used in flow cytometry to excite fluorochrome molecules with subsequent measurement of the specific fluorescence of individual cells. In this study, the performance of the ultraviolet light scattering (UVLS) in the analysis of individual particles with flow cytometry has been demonstrated for the first time. The main advantage of the UVLS relates to the improvement of the analysis of submicron particles due to the strong dependence of the scattering efficiency on the wavelength of the incident light. In this work, submicron particles were analyzed using a scanning flow cytometer (SFC) that allows measurements of light scattering in an angle-resolved regime. The measured light-scattering profiles of individual particles were utilized in solution of the inverse light-scattering problem to retrieve the particle characteristics using a global optimization. The standard polystyrene microspheres were successfully characterized from the analysis of UVLS which provided the size and refractive index (RI) of individual beads. We believe that the main application of UVLS relates to the analysis of microparticles in a serum, in particular in the analysis of chylomicrons (CMs). We have demonstrated the performance of the UVLS SFC in the analysis of CMs of a donor. The RI versus size scatterplot of CMs was successfully retrieved from the analysis. The current set-up of the SFC has allowed us to characterize individual CMs starting from the size of 160 nm that provides determination of the CM concentration in a serum with flow cytometry. This feature of the UVLS should help with the analysis of lipid metabolism measuring RI and size map evolution after lipase action.


Assuntos
Micropartículas Derivadas de Células , Raios Ultravioleta , Citometria de Fluxo , Espalhamento de Radiação , Metabolismo dos Lipídeos , Tamanho da Partícula
4.
Cytometry A ; 103(9): 712-722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37195007

RESUMO

Methods for measuring erythrocyte age distribution are not available as a simple analytical tool. Most of them utilize the fluorescence or radioactive isotopes labeling to construct the age distribution and support physicians with aging indices of donor's erythrocytes. The age distribution of erythrocyte may be a useful snapshot of patient state over 120-days period of life. Previously, we introduced the enhanced assay of erythrocytes with measurement of 48 indices in four categories: concentration/content, morphology, aging and function (10.1002/cyto.a.24554). The aging category was formed by the indices based on the evaluation of the derived age of individual cells. The derived age does not exactly mean the real age of erythrocytes and its evaluation utilizes changes of cellular morphology during a lifespan. In this study, we are introducing the improved methodological approach that allows us to retrieve the derived age of individual erythrocytes, to construct the aging distribution, and to reform the aging category consisting of eight indices. The approach is based on the analysis of the erythrocyte vesiculation. The erythrocyte morphology is analyzed by scanning flow cytometry that measures the primary characteristics (diameter, thickness, and waist) of individual cells. The surface area (S) and sphericity index (SI) are calculated from the primary characteristics and the scattering diagram SI versus S is used in the evaluation of the derived age of each erythrocyte in a sample. We developed the algorithm to evaluate the derived age that provides eight indices in the aging category based on a model using light scatter features. The novel erythrocyte indices were measured for simulated cells and blood samples of 50 donors. We determined the first-ever reference intervals for these indices.


Assuntos
Índices de Eritrócitos , Eritrócitos , Humanos , Lactente , Citometria de Fluxo/métodos
5.
Cytometry A ; 103(1): 39-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349217

RESUMO

Molecular/cell level of gas exchange function assumes the accurate measurement of erythrocyte characteristics and rate constants concerning to molecules involved into the CO2 /O2 transport. Unfortunately, common hematology analyzers provide the measurement of eight indices of erythrocytes only and say little about erythrocyte morphology and nothing about rate constants of cellular function. The aim of this study is to demonstrate the ability of the Scanning Flow Cytometer (SFC) in the complete morphological analysis of mature erythrocytes and characterization of erythrocyte function via measurement of lysing kinetics. With this study we are introducing 48 erythrocyte indices. To provide the usability of application of the SFC in clinical diagnosis, we formed four categories of indices which are as follows: content/concentration (9 indices), morphology (26 indices), age (5 indices), and function (8 indices). The erythrocytes of 39 healthy volunteers were analyzed with the SFC to fix the first-ever reference intervals for the new indices introduced. The essential measurable reliability of the presented method is expressed in terms of errors of characteristics of single erythrocytes retrieved from the solution of the inverse light-scattering problem and errors of parameters retrieved from the fitting of the experimental kinetics by molecular-kinetics model of erythrocyte lysis.


Assuntos
Índices de Eritrócitos , Eritrócitos , Humanos , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes , Morte Celular
6.
Anal Methods ; 13(29): 3233-3241, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184022

RESUMO

Analysis of blood platelets encounters a number of different preanalytical issues, which greatly decrease the reliability and accuracy of routine clinical analysis. Modern hematology analyzers determine only four parameters relating to platelets. Platelet shape and dose-dependent activation parameters are outside the scope of commercial instruments. We used the original scanning flow cytometer for measurement of angle-resolved light scattering and the discrete dipole approximation for simulation of light scattering from a platelet optical model, as an oblate spheroid, and global optimization with two algorithms: the DATABASE algorithm to retrieve platelet characteristics from light scattering and the DIRECT algorithm to retrieve dose-dependent activation parameters. We developed the original sampling protocol to decrease spontaneous platelet activation. The new protocol allows us to keep most of the platelets in resting and partially activated states before analysis. The analysis delivers 13 content and morphological parameters of the platelets. To analyze platelet shape change during ADP activation we developed a phenomenological model. This model was applied to the analysis of ADP activation of platelets to give 8 dose-dependent activation parameters. To demonstrate the applicability of the developed protocol and analytical method, we analyzed platelets from five donors. This novel approach to the analysis of platelets allows the determination of 21 parameters relating to their content, morphology and dose-dependent activation.


Assuntos
Plaquetas , Ativação Plaquetária , Simulação por Computador , Citometria de Fluxo , Humanos , Reprodutibilidade dos Testes
7.
Cytometry A ; 95(12): 1275-1284, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750613

RESUMO

Nifedipine is calcium channels and pumps blocker widely used in medicine. However, mechanisms of nifedipine action in blood are not clear. In particular, the influence of nifedipine on erythrocytes is far from completely understood. In this work, applying scanning flow cytometry, we observed experimentally for the first time the dynamics behind a significant increase of HCO3- /Cl- transmembrane exchange rate of CDB3 (main anion exchanger, AE1, Band 3, SLC4A1) of human erythrocytes in the presence of nifedipine in blood. It was found that the rate of CDB3 activation is not limited by the rate of nifedipine binding and/or Ca2+ transport. In order to explain the experimental data, we suggested a kinetic model assuming that the rate of CDB3 activation is limited by the dynamics of the balance between two intracellular processes (1) the activation of CDB3 limited by its interaction with intracellular Ca2+ , and (2) the spontaneous deactivation of CDB3. Thus the use of scanning flow cytometry allowed to clarify quantitatively the molecular kinetic mechanism of nifedipine action on human erythrocytes. In particular, the efficiency (~30) and rates of activation (~0.3 min-1 ) and deactivation (~10-3 min-1 ) of CDB3 in human erythrocytes was evaluated for two donors. © 2019 International Society for Advancement of Cytometry.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Eritrócitos/metabolismo , Citometria de Fluxo , Nifedipino/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos
8.
Cytometry A ; 93(7): 695-705, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110130

RESUMO

We propose a calibration-free method to determine the number of receptors per cell, as well as the direct and the reverse reaction rate constants for a single receptor. The method is based on the analysis of the temporal evolution of the cells mean fluorescent intensity measured by a flow cytometer during the ligand-receptor (antigen-antibody) binding under the conditions of their comparable concentrations. We developed the kinetic approach accounting both for the delay between the dilution and the measurement and for the practical duration of the measurement itself. The method was applied to determine thenumber of CD14 receptors on human blood mononuclear (granulocytes, monocytes, lymphocytes) cells of several donors. We also obtained the direct ( k+= (5.6 ± 0.2) × 107 M-1 min-1 ) and reverse ( k-= (1.3 ± 0.2) × 10-2 min-1 ) rate constants of ligand-receptor interaction, and estimated the size of the binding site as b = 0.5 nm. The latter allows one to recalculate the rate constants for a different ligand, fluorescent label, medium viscosity, and/or temperature. The knowledge of the rate constants is essential for the calibration-free determination of the number of receptors per cell from a single kinetic curve of the cells mean fluorescence intensity.


Assuntos
Citometria de Fluxo/métodos , Imunoensaio/métodos , Receptores de Lipopolissacarídeos/química , Sítios de Ligação de Anticorpos , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Leucócitos/química , Leucócitos/imunologia , Receptores de Lipopolissacarídeos/imunologia , Ligação Proteica
9.
J Biophotonics ; 11(10): e201700381, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29603652

RESUMO

Chylomicrons (CMs) are lipoprotein particles circulating in blood and transporting dietary lipids. Optically speaking, CMs are small compared to the wavelength of visible light and widely distributed by the size and refractive index (RI). Consequently, intensity of light scattered by the CMs scales with up to the sixth power of their size, hampering simultaneous analysis of 60 and 600 nm CMs. We present an accurate method for quantitative characterization of large-size CM subpopulation by the distributions over size and RI. For the first time the CM characteristics have been determined at a single particle level based on angle-resolved light-scattering measurements. We applied the developed method to 2 key processes relating to CM metabolism, namely in vivo dynamics of CMs in blood plasma after a meal and in vitro lipolysis of CMs by the lipoprotein lipase in postheparin plasma. We have observed the substantial variations in CM concentration, size and RI distributions. This opens the way for a multitude of medical applications involving screening of CM metabolism, which we exemplified by revealing large differences in CM characteristics after a 12-hour fast between a healthy volunteer and a patient with atherosclerosis.


Assuntos
Quilomícrons/sangue , Luz , Espalhamento de Radiação , Aterosclerose/sangue , Estudos de Casos e Controles , Humanos , Lipólise , Período Pós-Prandial
10.
J Biomed Opt ; 21(11): 115003, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893088

RESUMO

Flow cytometry method (FCM) is widely used for analysis of cell-derived microparticles (MPs). Numerous efforts are currently aimed to standardize these measurements among different instruments. We push the FCM characterization of MPs to the limit based on rigorous simulation of measured signals. We measured forward- and side-scatter (FSC/SSC) signals and angle-resolved light-scattering profiles (LSPs) of polystyrene microspheres and MPs, including their aggregates, using a scanning flow cytometer (SFC). We used the Mie theory to (1) accurately evaluate instrument detection limits; (2) construct FSC/SSC gates for MPs in absolute scales of size and refractive index (RI); and (3) determine size and RI of individual spherical MPs. LSPs were used for advanced characterization, including differentiation of spherical and nonspherical particles. The proposed absolute FSC/SSC gating is naturally standardized for any FCM instrument, given the knowledge of its optical system and leads to instrument-independent analysis of MPs. The inverse Mie problem has a unique solution only for some regions of size and RI and uncertainties rapidly increase with decreasing size and RI. The developed methods are applicable to any flow cytometer, but are limited by assumption of particle sphericity. The latter can be relaxed only if additional signals, such as LSP, are measured.


Assuntos
Micropartículas Derivadas de Células/química , Citometria de Fluxo/métodos , Plasma Rico em Plaquetas/citologia , Micropartículas Derivadas de Células/fisiologia , Citometria de Fluxo/normas , Humanos , Luz , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Espalhamento de Radiação
11.
Biomed Opt Express ; 7(4): 1305-10, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27446656

RESUMO

We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.

12.
J Theor Biol ; 393: 194-202, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26780645

RESUMO

Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Sulfato de Magnésio/farmacologia , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos , Cinética , Modelos Biológicos , Doadores de Tecidos
13.
Cytometry A ; 89(2): 159-68, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25808430

RESUMO

Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population.


Assuntos
Plaquetas/fisiologia , Micropartículas Derivadas de Células/fisiologia , Citometria de Fluxo/métodos , Calibragem , Humanos , Luz , Plasma Rico em Plaquetas/citologia , Espalhamento de Radiação
14.
J Biomed Opt ; 19(8): 085004, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25104406

RESUMO

The paper is focused on light scattering by aggregates of optically soft particles with a size larger than the wavelength, in particular, blood platelets. We conducted a systematic simulation of light scattering by dimers and larger aggregates of blood platelets, each modeled as oblate spheroids, using the discrete dipole approximation. Two-dimensional (2-D) light scattering patterns (LSPs) and internal fields showed that the multiple scattering between constituent particles can be neglected. Additionally, we derived conditions of the scattering angle and orientation of the dimer, under which the averaging of the 2-D LSPs over the azimuthal scattering angle washes out interference in the far field, resulting in averaged LSPs of the aggregate being equal to the sum of that for its constituents. We verified theoretical conclusions using the averaged LSPs of blood platelets measured with the scanning flow cytometer (SFC). Moreover, we obtained similar results for a model system of aggregates of polystyrene beads, studied both experimentally and theoretically. Finally, we discussed the potential of discriminating platelet aggregates from monomers using the SFC.


Assuntos
Plaquetas/fisiologia , Citometria de Fluxo/métodos , Modelos Cardiovasculares , Nefelometria e Turbidimetria/métodos , Agregação Plaquetária/fisiologia , Refratometria/métodos , Espalhamento de Radiação , Plaquetas/citologia , Células Cultivadas , Simulação por Computador , Humanos , Luz
15.
J Biomed Opt ; 18(1): 17001, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23288415

RESUMO

We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 µM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.


Assuntos
Plaquetas/química , Plaquetas/citologia , Citometria de Fluxo/métodos , Simulação por Computador , Bases de Dados Factuais , Humanos , Luz , Espalhamento de Radiação
16.
Cytometry A ; 79(7): 570-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21548080

RESUMO

We instrumentally, theoretically, and experimentally demonstrate a new approach for characterization of nonspherical individual particles from light scattering. Unlike the original optical scheme of the scanning flow cytometer that measures an angle-resolved scattering corresponding in general to S11 element of the light-scattering matrix, the modernized instrument allows us to measure the polarized light-scattering profile of individual particles simultaneously. Theoretically, the polarized profile is expressed by the combination of a few light-scattering matrix elements. This approach supports us with additional independent data to characterize a particle with a complex shape and an internal structure. Applicability of the new method was demonstrated from analysis of polymer bispheres. The bisphere characteristics, sizes, and refractive indices of each sphere composing the bisphere were successfully retrieved from the solution of the inverse light-scattering problem. The solution provides determination of the Eulerian angles, which describe the orientation of the bispheres relative to the direction of the incident laser beam and detecting polarizer of the optical system. Both the ordinary and polarized profiles show a perfect agreement with T-matrix simulation resulting to 50-nm precision for sizing of bispheres.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Luz , Espalhamento de Radiação , Interpretação de Imagem Assistida por Computador/métodos
17.
J Biomed Opt ; 14(6): 064036, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20059274

RESUMO

We characterize T- and B-lymphocytes from several donors, determining cell diameter, ratio of nucleus to cell diameter, and refractive index of the nucleus and cytoplasm for each individual cell. We measure light-scattering profiles with a scanning flow cytometer and invert the signals using a coated sphere as an optical model of the cell and by relying on a global optimization technique. The main difference in morphology of T- and B-lymphocytes is found to be the larger mean diameters of the latter. However, the difference is smaller than the natural biological variability of a single cell. We propose nuclear inhomogeneity as a possible reason for the deviation of measured light-scattering profiles from real lymphocytes from those obtained from the coated sphere model.


Assuntos
Linfócitos B/citologia , Luz , Modelos Biológicos , Espalhamento de Radiação , Linfócitos T/citologia , Algoritmos , Teorema de Bayes , Núcleo Celular , Forma Celular , Tamanho Celular , Citometria de Fluxo , Humanos , Microscopia Confocal , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA