RESUMO
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia disorder associated with lethal arrhythmias. Most CPVT cases are caused by inherited variants in the gene encoding ryanodine receptor type 2 (RYR2). OBJECTIVE: The goal of this study was to investigate the structure-activity relationship of tetracaine derivatives and to test a lead compound in a mouse model of CPVT. METHODS: We synthesized >200 tetracaine derivatives and characterized 11 of those. The effects of these compounds on Ca2+ handling in cardiomyocytes from R176Q/+ mice was tested with confocal microscopy. The effects of lead compound MSV1302 on arrhythmia inducibility and cardiac contractility were tested by programmed electrical stimulation and echocardiography, respectively. Plasma and microsomal stability and cytotoxicity assays were also performed. RESULTS: Ca2+ imaging revealed that 3 of 11 compounds suppressed sarcoplasmic reticulum Ca2+ leak through mutant RyR2. Two compounds selected for further testing exhibited a half-maximal effective concentration of 146 nM (MSV1302) and 49 nM (MSV1406). Whereas neither compound altered baseline electrocardiogram intervals, only MSV1302 suppressed stress- and pacing-induced ventricular tachycardia in vivo in R176Q/+ mice. Echocardiography revealed that the lead compound MSV1302 did not negatively affect cardiac inotropy and chronotropy. Finally, compound MSV1302 did not block INa, ICa,L, or IKr; it exhibited excellent stability in plasma and microsomes, and it was not cytotoxic. CONCLUSION: Structure-activity relationship studies of second-generation tetracaine derivatives identified lead compound MSV1302 with a favorable pharmacokinetic profile. MSV1302 normalized aberrant RyR2 activity in vitro and in vivo, without altering cardiac inotropy, chronotropy, or off-target effects on other ion channels. This compound may be a strong candidate for future clinical studies to determine its efficacy in CPVT patients.
RESUMO
Waterpipe tobacco (WPT) smoking is a public health concern, particularly among youth and young adults. The global spread of WPT use has surged because the introduction of pre-packaged flavored and sweetened WPT, which is widely marketed as a safer tobacco alternative. Besides flavorants and sugars, WPT additives include humectants, which enhance the moisture and sweetness of WPT, act as solvents for flavors, and impart smoothness to the smoke, thus increasing appeal to users. In the United States, unlike cigarette tobacco flavoring (with the exception of menthol), there is no FDA product standard or policy in place prohibiting sales of flavored WPT. Research has shown that the numerous fruit, candy, and alcohol flavors added to WPT entice individuals to experience those flavors, putting them at an increased risk of exposure to WPT smoke-related toxicants. Additionally, burning charcoal briquettes-used as a heating source for WPT-contributes to the harmful health effects of WPT smoking. This review presents existing evidence on the potential toxicity resulting from humectants, sugars, and flavorants in WPT, and from the charcoal used to heat WPT. The review discusses relevant studies of inhalation toxicity in animal models and of biomarkers of exposure in humans. Current evidence suggests that more data are needed on toxicant emissions in WPT smoke to inform effective tobacco regulation to mitigate the adverse impact of WPT use on human health.
Assuntos
Carvão Vegetal , Aromatizantes , Edulcorantes , Tabaco para Cachimbos de Água , Humanos , Aromatizantes/toxicidade , Edulcorantes/toxicidade , Animais , Higroscópicos/toxicidade , Fumar Cachimbo de Água/efeitos adversosRESUMO
Ketene is one of the most toxic vaping emissions identified to date. However, its high reactivity renders it relatively challenging to identify. In addition, certain theoretical studies have shown that realistic vaping temperature settings may betoo low to produce ketene. Each of these issues is addressed herein. First, an isotopically labeled acetate precursor is used for the identification of ketene with enhanced rigor in vaped aerosols. Second, discrepancies between theoretical and experimental findings are explained by accounting for the effects of aerobic (experimental) versus anaerobic (simulated and theoretical) pyrolysis conditions. This finding is also relevant to explaining the relatively low-temperature production of aerosol toxicants beyond ketene. Moreover, the study presented herein shows that ketene formation during vaping is not limited to molecules possessing a phenyl acetate substructure. This means that ketene emission during vaping, including from popular flavorants such as ethyl acetate, may be more prevalent than is currently known.
RESUMO
Dry hitting, a phenomenon produced by e-cigarettes with refillable cartridges when the liquid in the coil is low, is a common occurrence among regular vapers despite being an unintended consequence of the device. This phenomenon's hazard to public health is still unknown and needs further investigation. Lung cells cultured at the air-liquid interface were exposed to vaped aerosol consisting of 3â¯% w/v ethyl maltol in propylene glycol for three-second puffs every 30â¯seconds for 80 total puffs with either dry hit or saturated conditions. Cytotoxicity was measured colorimetrically. The thermal degradation of the heating coils and wicks was visualized using scanning electron microscopy. The chemical byproducts in the aerosol were analyzed using proton nuclear magnetic resonance and inductively coupled plasma mass spectrometry. The results revealed a highly significant increase in cytotoxicity from dry hit treatments. Imaging showed thermal decomposition of the cotton wick after dry hitting, which was confirmed by energy dispersive x-ray spectroscopy with less oxygen in the dry hit cotton. Chemical byproducts were found via unique peaks in the dry hit condensate in the aromatic and alkene regions. Saturated condensate showed higher concentrations of detected metal species than dry-hit condensate. E-cigarette users should avoid dry hitting by refilling tanks or cartridges preemptively or by using disposable coils to avoid increased toxicity during vaping.
Assuntos
Aerossóis , Sobrevivência Celular , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Sobrevivência Celular/efeitos dos fármacos , Vaping/efeitos adversos , Pulmão/efeitos dos fármacosRESUMO
Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.C. 321(s)) of the U.S. Federal Food Drug and Cosmetic Act (FD&C Act). Food additives and GRAS substances are by the FD&C Act definition intended for use in food, thus safety is based on oral consumption; the term GRAS cannot serve as an indicator of the toxicity of e-cigarette ingredients when aerosolized and inhaled (ie, vaped). There is no legal or scientific support for labeling e-cigarette product ingredients as "GRAS." This review discusses our concerns with the GRAS provision being applied to e-cigarette products and provides examples of chemical compounds that have been used as food ingredients but have been shown to lead to adverse health effects when inhaled. The review provides scientific insight into the toxicological evaluation of e-liquid ingredients and their aerosols to help determine the potential respiratory risks associated with their use in e-cigarettes.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , United States Food and Drug Administration , Estados Unidos , Humanos , Aditivos Alimentares/toxicidadeRESUMO
In this narrative review, we highlight the challenges of comparing emissions from different tobacco products under controlled laboratory settings (using smoking/vaping machines). We focus on tobacco products that generate inhalable smoke or aerosol, such as cigarettes, cigars, hookah, electronic cigarettes, and heated tobacco products. We discuss challenges associated with sample generation including variability of smoking/vaping machines, lack of standardized adaptors that connect smoking/vaping machines to different tobacco products, puffing protocols that are not representative of actual use, and sample generation session length (minutes or number of puffs) that depends on product characteristics. We also discuss the challenges of physically characterizing and trapping emissions from products with different aerosol characteristics. Challenges to analytical method development are also covered, highlighting matrix effects, order of magnitude differences in analyte levels, and the necessity of tailored quality control/quality assurance measures. The review highlights two approaches in selecting emissions to monitor across products, one focusing on toxicants that were detected and quantified with optimized methods for combustible cigarettes, and the other looking for product-specific toxicants using non-targeted analysis. The challenges of data reporting and statistical analysis that allow meaningful comparison across products are also discussed. We end the review by highlighting that even if the technical challenges are overcome, emission comparison may obscure the absolute exposure from novel products if we only focus on relative exposure compared to combustible products.
RESUMO
Studies of Electronic Nicotine Delivery Systems (ENDS) toxicity have largely focused on individual components such as flavour additives, base e-liquid ingredients (propylene glycol, glycerol), device characteristics (eg, model, components, wattage), use behaviour, etc. However, vaping involves inhalation of chemical mixtures and interactions between compounds can occur that can lead to different toxicities than toxicity of the individual components. Methods based on the additive toxicity of individual chemical components to estimate the health risks of complex mixtures can result in the overestimation or underestimation of exposure risks, since interactions between components are under-investigated. In the case of ENDS, the potential of elevated toxicity resulting from chemical reactions and interactions is enhanced due to high operating temperatures and the metallic surface of the heating element. With the recent availability of a wide range of e-liquid constituents and popularity of do-it-yourself creation of e-liquid mixtures, the need to understand chemical and physiological impacts of chemical combinations in ENDS e-liquids and aerosols is immediate. There is a significant current knowledge gap concerning how specific combinations of ENDS chemical ingredients result in synergistic or antagonistic interactions. This commentary aims to review the current understanding of chemical reactions between e-liquid components, interactions between additives, chemical reactions that occur during vaping and aerosol properties and biomolecular interactions, all of which may impact physiological health.
RESUMO
Introduction: In the wake of continued consumer demand despite increasing regulatory scrutiny, there is a need to develop systematic methods for identifying the harm profile of new psychoactive substances derived from hemp. Tetrahydrocannabinol-O (THC-O)-acetate, colloquially known as THCO, is the acetate ester of the principal psychoactive compound in cannabis. The heating of THCO can create ketene gas, which is harmful to the lungs. Materials and Methods: The research team used a multidisciplinary, iterative process to develop a survey to incorporate consumers' perspectives of semisynthetic cannabinoids. The survey was then distributed across the social media platform Reddit to learn about delivery device preferences and associated use styles when consuming THCO. Results: Most participants (74.9%) vaped THCO and one-quarter of participants (24.3%) dabbed THCO and tended to report higher temperatures for dabbing than vaping THCO. A small portion (12.0%) of participants reported concerns regarding ketene risk. Conclusion: As there are multiple variables associated with the formation of ketene, and consumer responses indicate temperatures use that might enable ketene formation, more research is needed to understand the risk profile of hemp-derived substances like THCO. Further studies are needed to understand the how various routes of administration and delivery devices used with THCO may exacerbate the risk of ketene formation and other potential harms.
RESUMO
The signal-to-noise ratio (SNR) is one of the key features of a fluorescent probe and one that often defines its potential utility for in vivo labeling and analyte detection applications. Here, it is reported that introducing a pyridine group into traditional cyanine-7 dyes in an asymmetric manner provides a series of tunable NIR fluorescent dyes (Cy-Mu-7) characterized by enhanced Stokes shifts (≈230 nm) compared to the parent cyanine 7 dye (<25 nm). The observed Stokes shift increase is ascribed to symmetry breaking of the Cy-Mu-7 core and a reduction in the extent of conjugation. The fluorescence signals of the Cy-Mu-7 dyes are enhanced upon confinement within the hydrophobic cavity of albumin or via spontaneous encapsulation within micelles in aqueous media. Utilizing the Cy-Mu-7, ultra-fast in vivo kidney labeling in mice is realized, and it is found that the liver injury will aggravate the burden of kidney by monitoring the fluorescence intensity ratio of kidney to liver. In addition, Cy-Mu-7 could be used as efficient chemiluminescence resonance energy transfer acceptor for the reaction between H2 O2 and bisoxalate. The potential utility of Cy-Mu-7 is illustrated via direct monitoring fluctuations in endogenous H2 O2 levels in a mouse model to mimic emergency room trauma.
Assuntos
Corantes Fluorescentes , Imagem Óptica , Animais , Camundongos , Corantes Fluorescentes/química , Interações Hidrofóbicas e HidrofílicasRESUMO
Vaping devices have risen in popularity since their inception in 2007. The practice involves using a variety of commercially available devices. Internal heating systems in devices aerosolize e-liquid formulations of complex mixtures including an active ingredient (e.g., THC, CBD, and nicotine), diluents (or cutting agents), solvents, and flavoring agents (e.g., terpenes and aldehydes). The vaping toxicology literature consists of cytotoxicity studies of individual chemicals and commercial formulas. Because of the variation of e-liquid composition, there is a limited understanding of the toxicity of ingredient combinations. This study analyzed the cytotoxic effects after exposure to individual and binary mixtures of a representative terpene (+-R-limonene) and diluent (triethyl citrate) on human lung cell models. Data were analyzed to determine the effects of 97:3 and 80:20% v/v (triethyl citrate/limonene) binary mixtures. BEAS-2B cells, a bronchial epithelial cell, and A549 cells, a type II alveolar epithelial cell, served as models for comparison. LC50 values were calculated and isobolograms were used to assess chemical interactions. Results show that limonene was more cytotoxic than triethyl citrate. Isobolographic analyses confirmed that the 97:3% v/v mixture resulted in an antagonistic chemical interaction. The 80:20% v/v mixture resulted in a similar result. Further testing of different ratios of binary mixtures is needed for chemical interaction screening to inform safety assessments.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Terpenos/toxicidade , Limoneno , Vaping/efeitos adversos , CitratosRESUMO
Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize additives in cannabis concentrates for acceptance, elimination, or further evaluation. Cannabinoids and contaminants (e.g., solvents, pesticides, etc.) are excluded from this framework because of the complexity involved in their assessment; theirs would not be a first-tier toxicological assessment. Further, several U.S. state regulators have provided guidance for major cannabinoids and contaminants. Toxicological risk assessment of cannabis concentrate additives, like other types of risk assessment, includes hazard assessment, dose-response, exposure assessment, and risk characterization steps. Scarce consumption data has made exposure assessment of cannabis concentrates difficult and variable. Previously unpublished consumption data collected from over 54,000 smart vaporization devices show that 50th and 95th percentile users consume 5 and 57 mg per day on average, respectively. Based on these and published data, we propose assuming 100 mg per day cannabis concentrate consumption for first-tier risk assessment purposes. Herein, we provide regulators, cannabis manufacturers, and consumers a preliminary methodology to evaluate the health risks of cannabis concentrate additives.
RESUMO
Δ8-THC acetate is a relatively new psychoactive cannabis product that is available online and in vape shops across the United States since it is currently largely unregulated. Because it contains a similar substructure to vitamin E acetate, which has been shown to form the poison gas ketene during vaping, we investigated potential ketene formation from Δ8-THC acetate, as well as two other cannabinoids acetates, CBN acetate and CBD acetate, under vaping conditions. Ketene was consistently observed in vaped condensates from all three cannabinoid acetates as well as from a commercial Δ8-THC acetate product purchased online.
Assuntos
Canabinoides , Vaping , Acetatos , Dronabinol , Etilenos , Cetonas , Estados UnidosRESUMO
Electronic nicotine delivery systems (ENDS) continue to rapidly evolve. Current products pose unique challenges and opportunities for researchers and regulators. This commentary aims to highlight research gaps, particularly in toxicity research, and provide guidance on priority research questions for the tobacco regulatory community. Disposable flavoured ENDS have become the most popular device class among youth and may contain higher nicotine levels than JUUL devices. They also exhibit enhanced harmful and potentially harmful constituents production, contain elevated levels of synthetic coolants and pose environmental concerns. Synthetic nicotine and flavour capsules are innovations that have recently enabled the circumvention of Food and Drug Administration oversight. Coil-less ENDS offer the promise of delivering fewer toxicants due to the absence of heating coils, but initial studies show that these products exhibit similar toxicological profiles compared with JUULs. Each of these topic areas requires further research to understand and mitigate their impact on human health, especially their risks to young users.
RESUMO
A broad variety of e-liquids are used by e-cigarette consumers. Additives to the e-liquid carrier solvents, propylene glycol and glycerol, often include flavorants and nicotine at various concentrations. Flavorants in general have been reported to increase toxicant formation in e-cigarette aerosols, yet there is still much that remains unknown about the effects of flavorants, nicotine, and flavorants + nicotine on harmful and potentially harmful constituents (HPHCs) when aerosolizing e-liquids. Common flavorants benzaldehyde, vanillin, benzyl alcohol, and trans-cinnamaldehyde have been identified as some of the most concentrated flavorants in some commercial e-liquids, yet there is limited information on their effects on HPHC formation. E-liquids containing flavorants + nicotine are also common, but the specific effects of flavorants + nicotine on toxicant formation remain understudied. We used 1H NMR spectroscopy to evaluate HPHCs and herein report that benzaldehyde, vanillin, benzyl alcohol, trans-cinnamaldehyde, and mixtures of these flavorants significantly increased toxicant formation produced during e-liquid aerosolization compared to unflavored e-liquids. However, e-liquids aerosolized with flavorants + nicotine decreased the HPHCs for benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" but increased the HPHCs for e-liquids containing trans-cinnamaldehyde compared to e-liquids with flavorants and no nicotine. We determined how nicotine affects the production of HPHCs from e-liquids with flavorant + nicotine versus flavorant, herein referred to as the "nicotine degradation factor". Benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" with nicotine showed lower HPHC levels, having nicotine degradation factors <1 for acetaldehyde, acrolein, and total formaldehyde. HPHC formation was most inhibited in e-liquids containing vanillin + nicotine, with a degradation factor of â¼0.5, while trans-cinnamaldehyde gave more HPHC formation when nicotine was present, with a degradation factor of â¼2.5 under the conditions studied. Thus, the effects of flavorant molecules and nicotine are complex and warrant further studies on their impacts in other e-liquid formulations as well as with more devices and heating element types.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Aerossóis/química , Benzaldeídos , Álcoois Benzílicos , Aromatizantes/análise , Substâncias Perigosas/análise , Espectroscopia de Ressonância Magnética , Nicotina/químicaRESUMO
Cannabis cultivation for medical purposes in Brazil has been increased in the last years. While cannabis crops are prohibited, hundreds patients have been granted with judicial authorizations and there is little information about the cultivation conditions, yields and chemical profiles of the plants. Cannabis plants contain hundreds of compounds, with cannabinoids and terpenes the main drivers of their toxicological and pharmacological properties. Besides the cannabinoids, terpene contents are useful for the chemotaxonomic classification of different varieties, and their role in forensic analyses should be further delineated. The present study monitored cannabis crops of fifteen participants who were granted special licenses by the Brazilian Courts in Rio de Janeiro and São Paulo. The cultivation conditions were monitored and five cannabinoids (tetrahydrocannabinol acid-THCA, tetrahydrocannabinol-THC, cannabidiolic acid-CBDA, cannabidiol-CBD and cannabinol-CBN) and nineteen terpenes were quantified in cannabis flowers. The total grow cycle of thirty-five cannabis plants ranged from 10 to 24 weeks. The dry flower yields ranged 22-90 g per plant. Most cannabis specimens were CBD-rich varieties (CBD levels from 1.6% to 16.7%, and THC levels from 0.0% to 2.6%, n = 22) used to treat epileptic patients. The THC-rich varieties contained CBD levels ranging from 0.03% to 0.8%, and THC levels from 0.7% to 20.1%, n = 11. Fewer of the samples contained THC:CBD ratios of approximately 1:1 (CBD levels of 3.3-3.8% and THC levels of 2.2-3.7%, n = 2). The most abundant terpenes in the cannabis flowers were beta-caryophyllene, alpha-humulene, guaiol and alpha-bisabolol. CBD-rich varieties showed significant higher levels of beta-caryophyllene and alpha-humulene in comparison with THC-rich varieties. Overall, the study herein provides data concerning medical cannabis crops grown in a region of Brazil that not only guide individual medical cannabis cultivation methods but also aid forensic analyses.
Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Maconha Medicinal , Analgésicos , Brasil , Canabinoides/análise , Canabinol/análise , Cannabis/química , Dronabinol/análise , Humanos , TerpenosRESUMO
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50 = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.
RESUMO
Observations that copper and homocysteine levels are simultaneously elevated in patients with cardiovascular disease has generated interest in investigating the interactions between copper and homocysteine. Several prior studies have shown that complexes of copper and homocysteine are toxic, leading to cardiovascular damage in vitro. It is not clear, however, why related effects do not occur with other structurally similar, more abundant cellular thiols such as glutathione and cysteine. Herein, a mechanism for a selective redox interaction between copper and homocysteine is demonstrated. It involves a kinetically favored intramolecular hydrogen atom transfer that results in an alpha-amino carbon-centered radical known to promote biomolecular damage.
Assuntos
Doenças Cardiovasculares/metabolismo , Cobre/metabolismo , Homocisteína/metabolismo , Cobre/química , Glutationa/química , Glutationa/metabolismo , Homocisteína/química , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismoRESUMO
Dabbing and vaping cannabis extracts have gained large popularity in the United States as alternatives to cannabis smoking, but diversity in both available products and consumption habits make it difficult to assess consumer exposure to psychoactive ingredients and potentially harmful components. This work studies the how relative ratios of the two primary components of cannabis extracts, Δ9-tetrahydrocannabinol (THC) and terpenes, affect dosage of these and exposure to harmful or potentially harmful components (HPHCs). THC contains a monoterpene moiety and has been previously shown to emit similar volatile degradation products to terpenes when vaporized. Herein, the major thermal degradation mechanisms for THC and ß-myrcene are elucidated via analysis of their aerosol gas phase products using automated thermal desorption-gas chromatography-mass spectrometry with the aid of isotopic labelling and chemical mechanism modelling. Four abundant products - isoprene, 2-methyl-2-butene, 3-methylcrotonaldehyde, and 3-methyl-1-butene - are shown to derive from a common radical intermediate for both THC and ß-myrcene and these products comprise 18-30% of the aerosol gas phase. The relative levels of these four products are highly correlated with applied power to the e-cigarette, which indicates formation of these products is temperature dependent. Vaping THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is correlated with less degradation of the starting material and a product distribution suggestive of a lower aerosolization temperature. By contrast, dabbing THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is associated with higher levels of HPHCs, and isotopic labelling showed this is due to increased reactivity of ß-myrcene relative to THC.
RESUMO
E-cigarette devices are wide ranging, leading to significant differences in levels of toxic carbonyls in their respective aerosols. Power can be a useful method in predicting relative toxin concentrations within the same device, but does not correlate well to inter-device levels. Herein, we have developed a simple mathematical model utilizing parameters of an e-cigarette's coil and wick in order to predict relative levels of e-liquid solvent degradation. Model 1, which is coil length/(wick surface area*wraps), performed in the moderate-to-substantial range as a predictive tool (R2 = 0.69). Twelve devices, spanning a range of coil and wick styles, were analyzed. Model 1 was evaluated against twelve alternative models and displayed the best predictability. Relationships that included power settings displayed weak predictability, validating that power levels cannot be reliably compared between devices due to differing wicking and coil components and heat transfer efficiencies.