Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426843

RESUMO

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Assuntos
Metabolismo dos Carboidratos/genética , Quirópteros/genética , Dieta , Evolução Molecular , Seleção Genética , Adaptação Biológica/genética , Animais , Quirópteros/metabolismo , Comportamento Alimentar
3.
Genes (Basel) ; 11(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092894

RESUMO

Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.


Assuntos
Nicotiana/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Citoplasma/metabolismo , DNA de Plantas/genética , Evolução Molecular , Tamanho do Genoma/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herança Materna/genética , Herança Paterna/genética , Duplicações Segmentares Genômicas/genética , Especificidade da Espécie , Nicotiana/metabolismo
4.
Syst Biol ; 69(3): 479-501, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633766

RESUMO

The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for $\sim $3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from $>$38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.].


Assuntos
Cetáceos/classificação , Cetáceos/genética , Filogenia , Animais , Biodiversidade , Classificação , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade da Espécie
5.
Circ Genom Precis Med ; 11(1): e001817, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874177

RESUMO

BACKGROUND: Although stillbirth is a significant health problem worldwide, the definitive cause of death remains elusive in many cases, despite detailed autopsy. In this study of partly explained and unexplained stillbirths, we used next-generation sequencing to examine an extended panel of 35 candidate genes known to be associated with ion channel disorders and sudden cardiac death. METHODS AND RESULTS: We examined tissue from 242 stillbirths (≥22 weeks), including those where no definite cause of death could be confirmed after a full autopsy. We obtained high-quality DNA from 70 cases, which were then sequenced for a custom panel of 35 genes, 12 for inherited long- and short-QT syndrome genes (LQT1-LQT12 and SQT1-3), and 23 additional candidate genes derived from genome-wide association studies. We examined the functional significance of a selected variant by patch-clamp electrophysiological recording. No predicted damaging variants were identified in KCNQ1 (LQT1) or KCNH2 (LQT2). A rare putative pathogenic variant was found in KCNJ2(LQT7) in 1 case, and several novel variants of uncertain significance were observed. The KCNJ2 variant (p. R40Q), when assessed by whole-cell patch clamp, affected the function of the channel. There was no significant evidence of enrichment of rare predicted damaging variants within any of the candidate genes. CONCLUSIONS: Although a causative link is unclear, 1 putative pathogenic and variants of uncertain significance variant resulting in cardiac channelopathies was identified in some cases of otherwise unexplained stillbirth, and these variants may have a role in fetal demise. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01120886.


Assuntos
Canalopatias/patologia , Natimorto/genética , Canalopatias/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Canal de Potássio ERG1/genética , Feminino , Idade Gestacional , Humanos , Canal de Potássio KCNQ1/genética , Masculino , Polimorfismo de Nucleotídeo Único , Canais de Potássio Corretores do Fluxo de Internalização/genética , Gravidez , Análise de Sequência de DNA , Natimorto/etnologia
6.
Plant Syst Evol ; 303(8): 1013-1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009724

RESUMO

Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.

7.
PLoS One ; 10(10): e0140831, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469858

RESUMO

In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Miócitos Cardíacos/metabolismo , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Gravidez , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA