Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(16): 168668, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908784

RESUMO

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.

2.
Macromol Rapid Commun ; : e2400261, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805189

RESUMO

Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.

3.
Green Chem ; 26(8): 4715-4722, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38654980

RESUMO

This study describes the synthesis of a new class of surfactants that is based on the bioderived building blocks fructose, fatty acid methyl esters (FAME), and hydroxy propionitrile (cyanoethanol, 3-HP). The synthesis is scalable, is carried out at ambient conditions, and does not require chromatography. The produced surfactants have excellent surfactant properties with critical micelle concentrations and Krafft points comparable to current glucose-based surfactants.

4.
J Colloid Interface Sci ; 662: 391-403, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359503

RESUMO

Amphiphilic molecules functionalized with photoresponsive motifs have attractive prospects for applications in smart functional bio-material ranging from cell-material interfaces to drug delivery systems owing to the precisely controllable functionality of self-assembled hierarchical supramolecular structures in aqueous media by a non-invasive light stimulation with high temporal- and spatial-resolution. However, most of reported photoresponsive amphiphiles are triggered by bio-damaging UV-light, which greatly limits the potential in bio-related applications. Herein, we present newly designed red-light controlled N,N'-diaryl-substituted indigo amphiphiles (IA), exhibiting excellent photoswitchablity and photostability with dual red-/green-light in organic media. Meanwhile, aqueous solutions of IA assembled into supramolecular structures in both microscopic and macroscopic length-scale, though the photoresponsiveness of IA is slightly compromised in aqueous media. At macroscopic length-scale, morphological changes of IA macroscopic scaffold prepared by a shear-flow method can be fine adjusted upon red-light irradiation. Moreover, the preferential attachment of live h-MSCs to IA macroscopic scaffold surface also indicates a good biocompatibility of IA macroscopic scaffold. These results provide the potential for developing the next generation of red-light controlled soft functional materials with good biocompatibility.

5.
Angew Chem Int Ed Engl ; 63(14): e202319387, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372499

RESUMO

Photoresponsive supramolecular polymers have a major potential for applications in responsive materials that are externally triggered by light with spatio-temporal control of their polymerisation state. While changes in macroscopic properties revealed the adaptive nature of these materials, it remains challenging to capture the dynamic depolymerisation process at the molecular level, which requires fast observation techniques combined with in situ irradiation. By implementing in situ UV illumination into a High-Speed Atomic Force Microscope (HS-AFM) setup, we have been able to capture the disassembly of a light-driven molecular motor-based supramolecular polymer. The real-time visualisation of the light-triggered disassembly process not only reveals cooperative depolymerisation, it also shows that this process continues after illumination is halted. Combining the data with cryo-electron microscopy and spectroscopy approaches, we obtain a molecular-level description of the motor-based polymer dynamics reminiscent of actin chain-end depolymerisation. Our detailed understanding of supramolecular depolymerisation will drive the development of future responsive polymer systems.

6.
EES Catal ; 2(1): 262-275, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222062

RESUMO

Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.

7.
ACS Appl Mater Interfaces ; 16(3): 4056-4070, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198650

RESUMO

Biocompatible synthetic supramolecular systems have shed light on biomedical and tissue-regenerative material applications. The intrinsic functional applicability, tunability, and stimuli-responsiveness of synthetic supramolecular systems allow one to develop various multicontrolled supramolecular assemblies in aqueous media. However, it remains highly challenging to use state-of-the-art supramolecular assemblies of photoresponsive amphiphiles controlled by multiple stimulations in fabricating macroscopic materials. Herein, we demonstrate a stiff-stilbene amphiphile (SA) multicontrolled supramolecular assembling system that comprises two different charged end groups. The excellent photoswitchabilities of SA in both organic and aqueous media are demonstrated. Furthermore, multiple stimuli, i.e., light, pH, and counterions, are applied to control the supramolecular assembling behaviors, which are monitored by circular dichroism spectroscopy and electron microscopies. This multicontrolled supramolecular system can be systematically assembled into macroscopic soft functional scaffolds, whose structural parameters are investigated by electron microscopies and X-ray diffraction techniques, suggesting the large aspect ratio of SA nanostructures assembled into macroscopic soft scaffolds. The fabricated soft functional scaffold is highly biocompatible for photocontrolled biotarget encapsulation/release selectively, as well as a cell-material interface for diverse cells' attachment. This new synthetic multicontrolled soft functional material provides a new strategy toward the development of next-generation controllable and biocompatible soft functional materials.

8.
Angew Chem Int Ed Engl ; 62(43): e202310582, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681477

RESUMO

Introducing photo-responsive molecules offers an attractive approach for remote and selective control and dynamic manipulation of material properties. However, it remains highly challenging how to use a minimal amount of photo-responsive units to optically modulate materials that are inherently inert to light irradiation. Here we show the application of a light-driven rotary molecular motor as a "motorized photo-modulator" to endow a typical H-bond-based gel system with the ability to respond to light irradiation and create a reversible sol-gel transition. The key molecular design feature is the introduction of a minimal amount (2 mol %) of molecular motors into the supramolecular network as photo-switchable non-covalent crosslinkers. Advantage is taken of the subtle interplay of the large geometry change during photo-isomerization of the molecular motor guest and the dynamic nature of a supramolecular gel host system. As a result, a tiny amount of molecular motors is enough to switch the mechanical modulus of the entire supramolecular systems. This study proves the concept of designing photo-responsive materials with minimum use of non-covalent light-absorbing units.

9.
Proc Natl Acad Sci U S A ; 120(27): e2301279120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364098

RESUMO

The design of stimuli-responsive systems in nanomedicine arises from the challenges associated with the unsolved needs of current molecular drug delivery. Here, we present a delivery system with high spatiotemporal control and tunable release profiles. The design is based on the combination of an hydrophobic synthetic molecular rotary motor and a PDMS-b-PMOXA diblock copolymer to create a responsive self-assembled system. The successful incorporation and selective activation by low-power visible light (λ = 430 nm, 6.9 mW) allowed to trigger the delivery of a fluorescent dye with high efficiencies (up to 75%). Moreover, we proved the ability to turn on and off the responsive behavior on demand over sequential cycles. Low concentrations of photoresponsive units (down to 1 mol% of molecular motor) are shown to effectively promote release. Our system was also tested under relevant physiological conditions using a lung cancer cell line and the encapsulation of an Food and Drug Administration (FDA)-approved drug. Similar levels of cell viability are observed compared to the free given drug showing the potential of our platform to deliver functional drugs on request with high efficiency. This work provides an important step for the application of synthetic molecular machines in the next generation of smart delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Polímeros/química , Corantes Fluorescentes , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química
10.
Small ; 19(39): e2303267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236202

RESUMO

Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.


Assuntos
Lipossomos , Nanopartículas , Humanos , Lipossomos/química , Nanopartículas/química , Proteínas , Células HeLa , Dióxido de Silício/química
11.
Nat Commun ; 14(1): 664, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750751

RESUMO

Polydopamine is a biomimetic self-adherent polymer, which can be easily deposited on a wide variety of materials. Despite the rapidly increasing interest in polydopamine-based coatings, the polymerization mechanism and the key intermediate species formed during the deposition process are still controversial. Herein, we report a systematic investigation of polydopamine formation on halloysite nanotubes; the negative charge and high surface area of halloysite nanotubes favour the capture of intermediates that are involved in polydopamine formation and decelerate the kinetics of the process, to unravel the various polymerization steps. Data from X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopies demonstrate that in the initial stage of polydopamine deposition, oxidative coupling reaction of the dopaminechrome molecules is the main reaction pathway that leads to formation of polycatecholamine oligomers as an intermediate and the post cyclization of the linear oligomers occurs subsequently. Furthermore, TRIS molecules are incorporated into the initially formed oligomers.

12.
J Am Chem Soc ; 145(9): 5053-5060, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826999

RESUMO

Seeded supramolecular polymerization (SSP) is a method that enables the controlled synthesis of supramolecular structures. SSP often relies on structures that are capable of self-assembly by interconverting between intramolecular and intermolecular modes of hydrogen bonding, characterized by a given kinetic barrier that is typically low. The control of the polymerization process is thus limited by the propensity of the hydrogen bonds to interconvert between the intramolecular and intermolecular modes of binding. Here, we report on an engineering of the polymerization kinetic barriers by sophisticated molecular design of the building blocks involved in such SSP processes. Our designs include two types of intramolecular hydrogen-bonded rings: on one hand, a central triazine tricarboxamide moiety that prevents self-assembly due to its stable intramolecular hydrogen bonds and on the other hand, three peripheral amide groups that promote self-assembly due to their stable intermolecular hydrogen bonds. We report a series of molecules with increasing bulkiness of the peripheral side chains exhibiting increasing kinetic stability in the monomeric form. Owing to the relative height of the barrier, we were able to observe that the rate constant of seeding is not proportional to the concentration of the seeds used. Based on that, we proposed a new kinetic model in which the rate-determining step is the activation of the monomer, and we provide the detailed energy landscape of the supramolecular polymerization process. Finally, we investigated the hetero-seeding of the building blocks that shows either inhibition or triggering of the polymerization.

13.
Nanoscale ; 15(5): 2402-2416, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651239

RESUMO

Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.


Assuntos
Antineoplásicos , Nanotubos , Humanos , Argila , Temperatura , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanotubos/química , Polímeros/química , Liberação Controlada de Fármacos
14.
Nanoscale ; 15(1): 248-258, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472238

RESUMO

The current lack of insight into nanoparticle-cell membrane interactions hampers smart design strategies and thereby the development of effective nanodrugs. Quantitative and methodical approaches utilizing cell membrane models offer an opportunity to unravel particle-membrane interactions in a detailed manner under well controlled conditions. Here we use total internal reflection microscopy for real-time studies of the non-specific interactions between nanoparticles and a model cell membrane at 50 ms temporal resolution over a time course of several minutes. Maintaining a simple lipid bilayer system across conditions, adsorption and desorption were quantified as a function of biomolecular corona, particle size and fluid flow. The presence of a biomolecular corona reduced both the particle adsorption rate onto the membrane and the duration of adhesion, compared to pristine particle conditions. Particle size, on the other hand, was only observed to affect the adsorption rate. The introduction of flow reduced the number of adsorption events, but increased the residence time. Lastly, altering the composition of the membrane itself resulted in a decreased number of adsorption events onto negatively charged bilayers compared to neutral bilayers. Overall, a model membrane system offers a facile platform for real-time imaging of individual adsorption-desorption processes, revealing complex adsorption kinetics, governed by particle surface energy, size dependent interaction forces, flow and membrane composition.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Membrana Celular , Bicamadas Lipídicas , Membranas
15.
Chem ; 8(8): 2290-2300, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36003886

RESUMO

Microscopic motility is a property that emerges from systems of interacting molecules. Unraveling the mechanisms underlying such motion requires coupling the chemistry of molecules with physical processes that operate at larger length scales. Here, we show that photoactive micelles composed of molecular switches gate the autonomous motion of oil droplets in water. These micelles switch from large trans-micelles to smaller cis-micelles in response to light, and only the trans-micelles are effective fuel for the motion. Ultimately, it is this light that controls the movement of the droplets via the photochemistry of the molecules composing the micelles used as fuel. Notably, the droplets evolve positive photokinetic movement, and in patchy light environments, they preferentially move toward peripheral areas as a result of the difference in illumination conditions at the periphery. Our findings demonstrate that engineering the interplay between molecular photo-chemistry and microscopic motility allows designing motile systems rationally.

16.
ACS Macro Lett ; 11(1): 20-25, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574801

RESUMO

Frozen complex coacervate core micelles (C3Ms) were developed as a class of particle stabilizers for Pickering emulsions. The C3Ms are composed of a core of electrostatically interacting weak polyelectrolytes, poly(acrylic acid) (pAA) and poly(dimethylaminopropylacrylamide) (pDMAPAA), surrounded by a corona of water-soluble and surface active poly(N-isopropylacrylamide) (pNiPAM). Mixing parameters of the two polymer solutions, including pH, mixing method, charge ratio, and salinity of the medium, were carefully controlled, leading to monodisperse, colloidally stable C3Ms. A combination of dynamic light scattering and proton nuclear magnetic resonance experiments showed that the C3Ms gradually disassembled from a dynamically frozen core state in pure water into free polyelectrolyte chains above 0.8 M NaCl. Upon formulation of dodecane-in-water emulsions, the frozen C3Ms adsorb as particles at the droplet interfaces in striking contrast with most of the conventional micelles made of amphiphilic block copolymers which fall apart at the interface. Eventually, increasing the salt concentration of the system triggered disassembly of the C3Ms, which led to emulsion destabilization.


Assuntos
Micelas , Polímeros , Emulsões , Polieletrólitos , Água
17.
Sci Rep ; 12(1): 5552, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365716

RESUMO

The energy transport in natural light-harvesting complexes can be explored in laboratory conditions via self-assembled supramolecular structures. One such structure arises from the amphiphilic dye C8S3 molecules, which self-assemble in an aqueous medium to a double-wall cylindrical nanotube reminiscent of natural light-harvesting complexes found in green sulphur bacteria. In this paper, we report a way to investigate the structure of inner nanotubes (NTs) alone by dissolving the outer NTs in a microfluidic setting. The resulting thermodynamically unstable system was rapidly frozen, preventing the reassembly of the outer NT from the dissolved molecules, and imaged using cryogenic transmission electron microscopy (cryo-TEM). The experimental cryo-TEM images and the molecular structure were compared by simulating high-resolution TEM images, which were based on the molecular modelling of C8S3 NTs. We found that the inner NT with outer walls removed during the flash-dilution process had a similar size to the parent double-walled NTs. Moreover, no structural inhomogeneity was observed in the inner NT after flash-dilution. This opens up exciting possibilities for functionalisation of inner NTs before the reassembly of the outer NT occurs, which can be broadly extended to modify the intra-architecture of other self-assembled nanostructures.


Assuntos
Nanoestruturas , Nanotubos , Microfluídica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nanotubos/química
18.
Chem Sci ; 13(11): 3263-3272, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414864

RESUMO

Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.

19.
J Am Chem Soc ; 144(13): 6019-6027, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341243

RESUMO

Natural systems transfer chiral information across multiple length scales through dynamic supramolecular interaction to accomplish various functions. Inspired by nature, many exquisite artificial supramolecular systems have been developed, in which controlling the supramolecular chirality holds the key to completing specific tasks. However, to achieve precise and non-invasive control and modulation of chirality in these systems remains challenging. As a non-invasive stimulus, light can be used to remotely control the chirality with high spatiotemporal precision. In contrast to common molecular switches, a synthetic molecular motor can act as a multistate chiroptical switch with unidirectional rotation, offering major potential to regulate more complex functions. Here, we present a light-driven molecular motor-based supramolecular polymer, in which the intrinsic chirality is transferred to the nanofibers, and the rotation of molecular motors governs the chirality and morphology of the supramolecular polymer. The resulting supramolecular polymer also exhibits light-controlled multistate aggregation-induced emission. These findings present a photochemically tunable multistate dynamic supramolecular system in water and pave the way for developing molecular motor-driven chiroptical materials.


Assuntos
Nanofibras , Água , Nanofibras/química , Polímeros/química , Estereoisomerismo
20.
Pharmaceutics ; 14(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214102

RESUMO

The aim of this study was the development of optimal sustained-release moxifloxacin (MOX)-loaded liposomes as intraocular therapeutics of endophthalmitis. Two methods were compared for the preparation of MOX liposomes; the dehydration-rehydration (DRV) method and the active loading method (AL). Numerous lipid-membrane compositions were studied to determine the potential effect on MOX loading and retention in liposomes. MOX and phospholipid contents were measured by HPLC and a colorimetric assay for phospholipids, respectively. Vesicle size distribution and surface charge were measured by DLS, and morphology was evaluated by cryo-TEM. The AL method conferred liposomes with higher MOX encapsulation compared to the DRV method for all the lipid compositions used. Cryo-TEM showed that both liposome types had round vesicular structure and size around 100-150 nm, while a granular texture was evident in the entrapped aqueous compartments of most AL liposomes, but substantially less in DRV liposomes; X-ray diffraction analysis demonstrated slight crystallinity in AL liposomes, especially the ones with highest MOX encapsulation. AL liposomes retained MOX for significantly longer time periods compared to DRVs. Lipid composition did not affect MOX release from DRV liposomes but significantly altered drug loading/release in AL liposomes. Interestingly, AL liposomes demonstrated substantially higher antimicrobial potential towards S. epidermidis growth and biofilm susceptibility compared to corresponding DRV liposomes, indicating the importance of MOX retention in liposomes on their activity. In conclusion, the liposome preparation method/type determines the rate of MOX release from liposomes and modulates their antimicrobial potential, a finding that deserves further in vitro and in vivo exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA