Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Struct Chem Imaging ; 3(1): 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261539

RESUMO

Sub-second full-field tomographic microscopy at third-generation synchrotron sources is a reality, opening up new possibilities for the study of dynamic systems in different fields. Sustained elevated data rates of multiple GB/s in tomographic experiments will become even more common at diffraction-limited storage rings, coming in operation soon. The computational tools necessary for the post-processing of raw tomographic projections have generally not experienced the same efficiency increase as the experimental facilities, hindering optimal exploitation of this new potential. We present here a fast, flexible, and user-friendly post-processing pipeline overcoming this efficiency mismatch and delivering reconstructed tomographic datasets just few seconds after the data have been acquired, enabling fast parameter and image quality evaluation as well as efficient post-processing of TBs of tomographic data. With this new tool, also able to accept a stream of data directly from a detector, few selected tomographic slices are available in less than half a second, providing advanced previewing capabilities paving the way to new concepts for on-the-fly control of dynamic experiments.

2.
IEEE Trans Image Process ; 25(3): 1207-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26800537

RESUMO

Reconstruction of underconstrained tomographic data sets remains a major challenge. Standard analytical techniques frequently lead to unsatisfactory results due to insufficient information. Several iterative algorithms, which can easily integrate a priori knowledge, have been developed to tackle this problem during the last few decades. Most of these iterative algorithms are based on an implementation of the Radon transform that acts as forward projector. This operator and its adjoint, the backprojector, are typically called few times per iteration and represent the computational bottleneck of the reconstruction process. Here, we present a Fourier-based forward projector, founded on the regridding method with minimal oversampling. We show that this implementation of the Radon transform significantly outperforms in efficiency other state-of-the-art operators with O(N2log2N) complexity. Despite its reduced computational cost, this regridding method provides comparable accuracy to more sophisticated projectors and can, therefore, be exploited in iterative algorithms to substantially decrease the time required for the reconstruction of underconstrained tomographic data sets without loss in the quality of the results.

3.
PLoS Med ; 9(1): e1001157, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22272189

RESUMO

BACKGROUND: The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization's Expanded Programme on Immunization (EPI) in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure. METHODS AND FINDINGS: An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations), supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs) of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase) averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage. CONCLUSIONS: In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the circumstances under which vaccination will avert epidemics, remain unclear. The approach of using an ensemble of models provides more secure conclusions than a single-model approach, and suggests greater confidence in predictions of health effects for lower transmission settings than for higher ones.


Assuntos
Eritrócitos/parasitologia , Estágios do Ciclo de Vida , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Modelos Biológicos , Plasmodium falciparum/fisiologia , Saúde Pública , Animais , Ensaios Clínicos como Assunto , Simulação por Computador , Seguimentos , Meia-Vida , Humanos , Incidência , Lactente , Malária Falciparum/mortalidade , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Prevalência , Fatores de Tempo , Resultado do Tratamento , Vacinação
4.
Malar J ; 8: 127, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19505328

RESUMO

BACKGROUND: A wide range of possible malaria vaccines is being considered and there is a need to identify which vaccines should be prioritized for clinical development. An important element of the information needed for this prioritization is a prediction of the cost-effectiveness of potential vaccines in the transmission settings in which they are likely to be deployed. This analysis needs to consider a range of delivery modalities to ensure that clinical development plans can be aligned with the most appropriate deployment strategies. METHODS: The simulations are based on a previously published individual-based stochastic model for the natural history and epidemiology of Plasmodium falciparum malaria. Three different vaccine types: pre-erythrocytic vaccines (PEV), blood stage vaccines (BSV), mosquito-stage transmission-blocking vaccines (MSTBV), and combinations of these, are considered each delivered via a range of delivery modalities (Expanded Programme of Immunization - EPI-, EPI with booster, and mass vaccination combined with EPI). The cost-effectiveness ratios presented are calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 10 per dose, projected over a 10-year period. RESULTS: The simulations suggest that PEV will be more cost-effective in low transmission settings, while BSV at higher transmission settings. Combinations of BSV and PEV are more efficient than PEV, especially in moderate to high transmission settings, while compared to BSV they are more cost-effective in moderate to low transmission settings. Combinations of MSTBV and PEV or PEV and BSV improve the effectiveness and the cost-effectiveness compared to PEV and BSV alone only when applied with EPI and mass vaccinations. Adding booster doses to the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the EPI for any vaccine, while mass vaccination improves effectiveness, especially in low transmission settings, and is often a more efficient alternative to the EPI. However, the costs of increasing the coverage of mass vaccination over 50% often exceed the benefits. CONCLUSION: The simulations indicate malaria vaccines might be efficient malaria control interventions, and that both transmission setting and vaccine delivery modality are important to their cost-effectiveness. Alternative vaccine delivery modalities to the EPI may be more efficient than the EPI. Mass vaccination is predicted to provide substantial health benefits at low additional costs, although achieving high coverage rates can lead to substantial incremental costs.


Assuntos
Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Animais , Simulação por Computador , Análise Custo-Benefício , Humanos , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia
5.
PLoS One ; 3(9): e3193, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18784833

RESUMO

BACKGROUND: A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider. METHODS AND FINDINGS: We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2-3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components. CONCLUSIONS: We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination.


Assuntos
Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Animais , Calibragem , Simulação por Computador , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Indústria Farmacêutica/tendências , Humanos , Malária/epidemiologia , Malária Falciparum/prevenção & controle , Modelos Teóricos , Parasitemia/epidemiologia , Plasmodium falciparum/metabolismo , Processos Estocásticos , Vacinação
6.
PLoS One ; 3(7): e2661, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18628828

RESUMO

BACKGROUND: Trials of intermittent preventive treatment against malaria in infants (IPTi) using sulphadoxine-pyrimethamine (SP) have shown a positive, albeit variable, protective efficacy against clinical malaria episodes. The impact of IPTi in different epidemiological settings and over time is unknown and predictions are hampered by the lack of knowledge about how IPTi works. We investigated mechanisms proposed for the action of IPTi and made predictions of the likely impact on morbidity and mortality. METHODS/PRINCIPAL FINDINGS: We used a comprehensive, individual-based, stochastic model of malaria epidemiology to simulate recently published trials of IPTi using SP with site-specific characteristics as inputs. This baseline model was then modified to represent hypotheses concerning the duration of action of SP, the temporal pattern of fevers caused by individual infections, potential benefits of avoiding fevers on immunity and the effect of sub-therapeutic levels of SP on parasite dynamics. The baseline model reproduced the pattern of results reasonably well. None of the models based on alternative hypotheses improved the fit between the model predictions and observed data. Predictions suggest that IPTi would have a beneficial effect across a range of transmission intensities. IPTi was predicted to avert a greater number of episodes where IPTi coverage was higher, the health system treatment coverage lower, and for drugs which were more efficacious and had longer prophylactic periods. The predicted cumulative benefits were proportionately slightly greater for severe malaria episodes and malaria-attributable mortality than for acute episodes in the settings modelled. Modest increased susceptibility was predicted between doses and following the last dose, but these were outweighed by the cumulative benefits. The impact on transmission intensity was negligible. CONCLUSIONS: The pattern of trial results can be accounted for by differences between the trial sites together with known features of malaria epidemiology and the action of SP. Predictions suggest that IPTi would have a beneficial impact across a variety of epidemiological settings.


Assuntos
Malária/epidemiologia , Malária/prevenção & controle , Antimaláricos/farmacologia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Combinação de Medicamentos , Resistência a Medicamentos , Humanos , Sistema Imunitário , Lactente , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA