Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31631837

RESUMO

Notch signaling regulates cell fate selection during development in multiple organs including the lung. Previous studies on the role of Notch in the lung focused mostly on Notch pathway core components or receptor-specific functions. It is unclear, however, how Jagged or Delta-like ligands collectively or individually (Jag1, Jag2, Dll1, Dll4) influence differentiation of airway epithelial progenitors. Using mouse genetic models we show major differences in Jag and Dll in regulation and establishment of cell fate. Jag ligands had a major impact in balancing distinct cell populations in conducting airways, but had no role in the establishment of domains and cellular abundance in the neuroendocrine (NE) microenvironment. Surprisingly, Dll ligands were crucial in restricting cell fate and size of NE bodies and showed an overlapping role with Jag in differentiation of NE-associated secretory (club) cells. These mechanisms may potentially play a role in human conditions that result in aberrant NE differentiation, including NE hyperplasias and cancer.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/citologia , Proteínas de Membrana/metabolismo , Proteínas Serrate-Jagged/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Microambiente Celular , Ligantes , Camundongos , Sistemas Neurossecretores/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
2.
Elife ; 62017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28525315

RESUMO

Neuroendocrine cells act as oxygen sensors in animals from fish to humans, but the evolutionary origins of these cells are only just becoming clear.


Assuntos
Petromyzon , Animais , Humanos , Hipóxia , Oxigênio
3.
Development ; 142(2): 258-67, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25564622

RESUMO

Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/embriologia , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Mucosa Respiratória/embriologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Técnicas de Cultura de Células , Imunofluorescência , Humanos , Imuno-Histoquímica , Hibridização In Situ , Proteína Jagged-1 , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch3 , Mucosa Respiratória/citologia , Proteínas Serrate-Jagged , Especificidade da Espécie
4.
Exp Hematol Oncol ; 1(1): 12, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23210618

RESUMO

Hematopoietic stem cells (HSCs) are rare cells that have the unique ability to self-renew and differentiate into cells of all hematopoietic lineages. The expansion of HSCs has remained an important goal to develop advanced cell therapies for bone marrow transplantation and many blood disorders. Over the last several decades, there have been numerous attempts to expand HSCs in vitro using purified growth factors that are known to regulate HSCs. However, these attempts have been met with limited success for clinical applications. New developments in the HSC expansion field coupled with gene therapy and stem cell transplant should encourage progression in attractive treatment options for many disorders including hematologic conditions, immunodeficiencies, and genetic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA