Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 55, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073475

RESUMO

BACKGROUND: Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [18F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT). We aimed to develop a novel FAP-targeting pharmacophore with improved pharmacokinetics by introducing a substitution at the 8-position of (4-quinolinoyl)-glycyl-2-cyanopyrrolidine, which allows for conjugation of a chelator, dye, or other payloads. RESULTS: Here we showed the synthesis of DOTA-conjugated eFAP-6 and sulfo-Cyanine5-conjugated eFAP-7. After chemical characterization, the uptake and specificity of both tracers were determined on FAP-expressing cells. In vitro, [111In]In-eFAP-6 demonstrated a superior affinity and a more rapid, although slightly lower, peak uptake than gold standard [111In]In-FAPI-46. Confocal microscopy demonstrated a quick FAP-mediated internalization of eFAP-7. Studies with HT1080-huFAP xenografted mice confirmed a more rapid uptake of [177Lu]Lu-eFAP-6 vs. [177Lu]Lu-FAPI-46. However, tumor retention at 24 h post injection of [177Lu]Lu-eFAP-6 was lower than that of [177Lu]Lu-FAPI-46, hereby currently limiting its use for TRT. CONCLUSION: The superior affinity and faster tumor accumulation of eFAP-6 over FAPI-46 makes it a suitable compound for radionuclide imaging. After further optimization, the eFAP series has great potential for various oncological interventions, including fluorescent-guided surgery and effective targeted radionuclide theranostics.

2.
Mol Imaging Biol ; 26(4): 616-627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890241

RESUMO

Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.


Assuntos
Carcinoma Ductal Pancreático , Indóis , Necrose , Imagem Óptica , Neoplasias Pancreáticas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/farmacocinética , Camundongos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Indóis/química , Distribuição Tecidual , Modelos Animais de Doenças , Linhagem Celular Tumoral , Imagem Corporal Total/métodos , Feminino , Combinação de Medicamentos , Porfirinas
3.
Life Sci ; 334: 122173, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907154

RESUMO

AIMS: The aim of our study was to determine the effect of histone deacetylase (HDAC) inhibitors (HDACis) on somatostatin type-2 receptor (SSTR2) expression and [111In]In-/[177Lu]Lu-DOTA-TATE uptake in vitro and in vivo. MATERIALS AND METHODS: The human cell lines NCI-H69 (small-cell lung carcinoma) and BON-1 (pancreatic neuroendocrine tumor) were treated with HDACis (i.e. entinostat, mocetinostat (MOC), LMK-235, CI-994 or panobinostat (PAN)), and SSTR2 mRNA expression levels and [111In]In-DOTA-TATE uptake were measured. Furthermore, vehicle- and HDACi-treated NCI-H69 and BON-1 tumor-bearing mice were injected with radiolabeled DOTA-TATE followed by biodistribution studies. Additionally, SSTR2 and HDAC mRNA expression of xenografts, and of NCI-H69, BON-1, NCI-H727 (human pulmonary carcinoid) and GOT1 (human midgut neuroendocrine tumor) cells were determined. KEY FINDINGS: HDACi treatment resulted in the desired effects in vitro. However, no significant increase in tumoral DOTA-TATE uptake was observed after HDACi treatment in NCI-H69 tumor-bearing animals, whereas tumoral SSTR2 mRNA and/or protein expression levels were significantly upregulated after treatment with MOC, CI-994 and PAN, i.e. a maximum of 2.1- and 1.3-fold, respectively. Analysis of PAN-treated BON-1 xenografts solely demonstrated increased SSTR2 mRNA expression levels. Comparison of HDACs and SSTR2 expression in BON-1 and NCI-H69 xenografts showed a significantly higher expression of 6/11 HDACs in BON-1 xenografts. Of these HDACs, a significant inverse correlation was found between HDAC3 and SSTR2 expression (Pearson r = -0.92) in the studied cell lines. SIGNIFICANCE: To conclude, tumoral uptake levels of radiolabeled DOTA-TATE were not enhanced after HDACi treatment in vivo, but, depending on the applied inhibitor, increased SSTR2 expression levels were observed.


Assuntos
Receptores de Somatostatina , Somatostatina , Humanos , Camundongos , Animais , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Somatostatina/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Cells ; 12(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408211

RESUMO

Tumor organoids have been pushed forward as advanced model systems for in vitro oncology drug testing, with the eventual goal to direct personalized cancer treatments. However, drug testing efforts suffer from a large variation in experimental conditions for organoid culturing and organoid treatment. Moreover, most drug tests are restricted to whole-well viability as the sole read-out, thereby losing important information about key biological aspects that might be impacted due to the use of administered drugs. These bulk read-outs also discard potential inter-organoid heterogeneity in drug responses. To tackle these issues, we developed a systematic approach for processing organoids from prostate cancer (PCa) patient-derived xenografts (PDXs) for viability-based drug testing and identified essential conditions and quality checks for consistent results. In addition, we generated an imaging-based drug testing procedure using high-content fluorescence microscopy in living PCa organoids to detect various modalities of cell death. Individual organoids and cell nuclei in organoids were segmented and quantified using a dye combination of Hoechst 33342, propidium iodide and Caspase 3/7 Green, allowing the identification of cytostatic and cytotoxic treatment effects. Our procedures provide important insights into the mechanistic actions of tested drugs. Moreover, these methods can be adapted for tumor organoids originating from other cancer types to increase organoid-based drug test validity, and ultimately, accelerate clinical implementation.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Animais , Humanos , Xenoenxertos , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Modelos Animais de Doenças , Organoides/metabolismo
5.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046825

RESUMO

Image-guided surgery using a gastrin-releasing peptide receptor (GRPR)-targeting dual-modality probe could improve the accuracy of the resection of various solid tumors. The aim of this study was to further characterize our four previously developed GRPR-targeting dual-modality probes that vary in linker structures and were labeled with indium-111 and sulfo-cyanine 5. Cell uptake studies with GRPR-positive PC-3 cells and GRPR-negative NCI-H69 cells confirmed receptor specificity. Imaging and biodistribution studies at 4 and 24 h with 20 MBq/1 nmol [111In]In-12-15 were performed in nude mice bearing a PC-3 and NCI-H69 xenograft, and showed that the probe with only a pADA linker in the backbone had the highest tumor-to-organ ratios (T/O) at 24 h after injection (T/O > 5 for, e.g., prostate, muscle and blood). For this probe, a dose optimization study with three doses (0.75, 1.25 and 1.75 nmol; 20 MBq) revealed that the maximum image contrast was achieved with the lowest dose. Subsequently, the probe was successfully used for tumor excision in a simulated image-guided surgery setting. Moreover, it demonstrated binding to tissue sections of human prostate, breast and gastro-intestinal stromal tumors. In summary, our findings demonstrate that the developed dual-modality probe has the potential to aid in the complete surgical removal of GRPR-positive tumors.

6.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36765883

RESUMO

Peptide receptor radionuclide therapy (PRRT), a form of internal targeted radiation treatment using [177Lu]Lu [DOTA0-Tyr3]octreotate, is used to treat patients with metastasized neuroendocrine tumors (NETs). Even though PRRT is now the second line of treatment for patients with metastasized NETs, the majority of patients will not be cured by the treatment. PRRT functions by inducing DNA damage upon radioactive decay and inhibition of DNA damage repair proteins could therefore be used as a strategy to potentiate PRRT. Previous work has shown promising results on the combination of PRRT with the PARP inhibitor olaparib in cell lines and mice and we have been taken the next step for further in vivo validation using two different xenografted mouse models. We observed that this combination therapy resulted in increased therapeutic efficacy only in one model and not the other. Overall, our findings indicate a tumor-type dependent anti-tumor response to the combination of PRRT and olaparib. These data emphasize the unmet need for the molecular stratification of tumors to predetermine the potential clinical value of combining PARP inhibition with PRRT.

7.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429059

RESUMO

Castration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment. These models were comprehensively profiled at the morphologic, genomic (n = 8) and transcriptomic levels (n = 81). All are high-grade adenocarcinomas that exhibit copy number alterations and transcriptomic features representative of CRPC patient cohorts. We identified losses of PTEN and RB1, MYC amplifications, as well as genomic alterations in TP53 and in members of clinically actionable pathways such as AR, PI3K and DNA repair pathways. Importantly, the clinically observed continued reliance of CRPC tumors on AR signaling is preserved across the entire set of models, with AR amplification identified in four PDXs. We demonstrate that PDXs and PDXOs faithfully reflect donor tumors and mimic matching patient drug responses. In particular, our models predicted patient responses to subsequent treatments and captured sensitivities to previously received therapies. Collectively, these PDX-PDXO pairs constitute a reliable new resource for in-depth studies of treatment-induced, AR-driven resistance mechanisms. Moreover, PDXOs can be leveraged for large-scale tumor-specific drug response profiling critical for accelerating therapeutic advances in CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Animais , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Organoides/metabolismo , Xenoenxertos , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças
8.
Eur J Nucl Med Mol Imaging ; 49(13): 4440-4451, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951084

RESUMO

PURPOSE: The radiolabeled gastrin-releasing peptide receptor (GRPR)-targeting antagonist NeoB is a promising radioligand for imaging and therapy of GRPR-expressing malignancies. In the current study, we aimed to discover the target organs of toxicity and the radiotoxic effects to these organs, when repeated dosages of [177Lu]Lu-NeoB are administered to healthy female and male mice. METHODS: Animals received either 3 injections, with a 7-day interval, of vehicle (control group 1), 1200 pmol [175Lu]Lu-NeoB (control group 2) or 40 MBq/400 pmol, 80 MBq/800 pmol, and 120 MBq/1200 pmol [177Lu]Lu-NeoB (treatment groups 1, 2, and 3, respectively). At week 5, 19, and 43 after the first injection acute, early, and late organ toxicity, respectively, was determined. For this, histopathological and blood analyses were performed. To correlate the observed toxicity to absorbed dose, we also performed extensive biodistribution and dosimetry studies. RESULTS: The biodistribution study showed the highest absorbed doses in GRPR-expressing pancreas, the liver, and the kidneys (the main organs of excretion). Both control groups and almost all animals of treatment group 1 did not show any treatment-related toxicological effects. Despite the high absorbed doses, no clear microscopic signs of toxicity were found in the pancreas and the liver. Histological analysis indicated kidney damage in the form of hydronephrosis and nephropathy in treatment groups 2 and 3 that were sacrificed at the early and late time point. In the same groups, increased blood urea nitrogen levels were found. CONCLUSION: In general, repeated administration of [177Lu]Lu-NeoB was tolerated. The most significant radiotoxic effects were found in the kidneys, similar to other clinically applied radioligands. The results of this study underline the potential of [177Lu]Lu-NeoB as a promising option for clinical therapy.


Assuntos
Radiometria , Receptores da Bombesina , Animais , Masculino , Feminino , Camundongos , Distribuição Tecidual , Rim/metabolismo , Lutécio/uso terapêutico
9.
Pharmaceutics ; 14(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057069

RESUMO

Background: To improve peptide receptor radionuclide therapy (PRRT), we aimed to enhance the expression of somatostatin type-2 receptors (SSTR2) in vitro and in vivo, using valproic acid (VPA). Methods: Human NCI-H69 small-cell lung carcinoma cells were treated with VPA, followed by [111In]In-DOTATATE uptake studies, RT-qPCR and immunohistochemistry analysis. Furthermore, NCI-H69 xenografted mice were treated with VPA or vehicle, followed by [177Lu]Lu-DOTATATE injection. Biodistribution studies were performed, and tissues were collected for further analysis. Results: VPA significantly increased SSTR2 expression in vitro. In animals, a statistically significant increased [177Lu]Lu-DOTATATE tumoral uptake was observed when VPA was administered eight hours before [177Lu]Lu-DOTATATE administration, but increased tumor SSTR2 expression levels were lacking. The animals also presented significantly higher [177Lu]Lu-DOTATATE blood levels, as well as an elevated renal tubular damage score. This suggests that the enhanced tumor uptake was presumably a consequence of the increased radiotracer circulation and the induced kidney damage. Conclusions: VPA increases SSTR2 expression in vitro. In vivo, the observed increase in tumoral [177Lu]Lu-DOTATATE uptake is not caused by SSTR2 upregulation, but rather by other mechanisms, e.g., an increased [177Lu]Lu-DOTATATE circulation time and renal toxicity. However, since both drugs are safely used in humans, the potential of VPA to improve PRRT remains open for investigation.

10.
Mol Imaging Biol ; 22(5): 1333-1341, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514888

RESUMO

PURPOSE: Current clinical measurements for tumor treatment efficiency rely often on changes in tumor volume measured as shrinkage by CT or MRI, which become apparent after multiple lines of treatment and pose a physical and psychological burden on the patient. Detection of therapy-induced cell death in the tumor can be a fast measure for treatment efficiency. However, there are no reliable clinical tools for detection of tumor necrosis. Previously, we studied the necrosis avidity of cyanine-based fluorescent dyes, which suffered long circulation times before tumor necrosis could be imaged due to low hydrophilicity. We now present the application of radiolabeled 800CW, a commercially available cyanine with high hydrophilicity, to image tumor necrosis in a mouse model. PROCEDURES: We conjugated 800CW to DOTA via a PEG linker, for labeling with single-photon emission-computed tomography isotope indium-111, yielding [111In]In-DOTA-PEG4-800CW. We then investigated specific [111In]In-DOTA-PEG4-800CW uptake by dead cells in vitro, using both fluorescence and radioactivity as detection modalities. Finally, we investigated [111In]In-DOTA-PEG4-800CW uptake into necrotic tumor regions of a 4T1 breast tumor model in mice. RESULTS: We successfully prepared a precursor and developed a reliable procedure for labeling 800CW with indium-111. We detected specific [111In]In-DOTA-PEG4-800CW uptake by dead cells, using both fluorescence and radioactivity. Albeit with a tumor uptake of only 0.37%ID/g at 6 h post injection, we were able to image tumor necrosis with a tumor to background ratio of 7:4. Fluorescence and radioactivity in cryosections from the dissected tumors were colocalized with tumor necrosis, confirmed by TUNEL staining. CONCLUSIONS: [111In]In-DOTA-PEG4-800CW can be used to image tumor necrosis in vitro and in vivo. Further research will elucidate the application of [111In]In-DOTA-PEG4-800CW or other radiolabeled hydrophilic cyanines for the detection of necrosis caused by chemotherapy or other anti-cancer therapies. This can provide valuable prognostic information in treatment of solid tumors.


Assuntos
Meios de Contraste/química , Radioisótopos de Índio/química , Indóis/química , Coloração e Rotulagem , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Indóis/síntese química , Camundongos Endogâmicos BALB C , Camundongos Nus , Necrose , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA