Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 258: 113668, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31796319

RESUMO

Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe2+ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe2O3 content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.


Assuntos
Arsênio , Compostos Férricos/química , Nanopartículas , Poluentes do Solo , Poluição Ambiental , Química Verde , Solo
2.
J Hazard Mater ; 379: 120832, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276925

RESUMO

Despite numerous studies having been conducted on the stabilization of heavy metal contaminated soil, our understanding of the mechanisms involved remains limited. Here green synthesized iron oxide nanoparticles (GION) were applied to stabilize cadmium (Cd) in a contaminated soil. GION not only stabilized soil Cd, but also improved soil properties within one year of incubation. After GION application both the exchangeable and carbonate bound Cd fractions decreased by 14.2-83.5% and 18.3-85.8% respectively, and most of the Cd was translocated to the residual Cd fraction. The application of GION also strongly altered soil bacterial communities. In GION treatments, the abundance of Gemmatimonadetes, Proteobacteria, and Saccharibacteria increased which led to a shift in the dominant bacterial genera from Bacillus to Candidatus koribacter. The variation in bacteria confirmed the restoration of the contaminated soil. The most abundant bacterial genus and species found in GION treatments were related to (i) plant derived biomass decomposition; (ii) ammoxidation and denitrification; and (iii) Fe oxidation. GION application may enhance the formation of larger soil aggregates with anaerobic centers and coprecipitation coupled Fe (II) oxidization, ammoxidation and nitrite reduction followed by Fe mineral ripening may be involved in Cd stabilization. The predominant stabilization mechanism was thus coprecipitation-ripening-stabilization.


Assuntos
Cádmio/análise , Compostos Férricos/química , Nanopartículas/química , Extratos Vegetais/química , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Euphorbiaceae/química , Firmicutes/isolamento & purificação , Química Verde , Microbiota , Folhas de Planta/química , Proteobactérias/isolamento & purificação
3.
Sci Total Environ ; 659: 491-498, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096378

RESUMO

While phytogenic nanomaterials have been successfully used to remove heavy metals in wastewater, the potential to successfully use such materials to immobilize heavy metals in soils is still unclear. In this study, phytogenic iron oxide nanoparticles (PION) were used to immobilize cadmium (Cd) in six soils. Amendment with PION effectively immobilized Cd, with a concomitant increase in the concentrations of iron oxides, soil pH and dissolved organic carbon (DOC) under both oxic and anoxic conditions. However, observed changes in soil properties and Cd fractions were different under oxic and anoxic conditions. After PION application, the exchangeable Cd fraction decreased by up to 91 and 69%, while the carbonate bound Cd fraction decreased by up to 61 and 75%, under oxic and anoxic conditions, respectively. Pearson correlation analysis revealed that under both oxic and anoxic conditions, Cd fractions were significantly and positively correlated with free iron oxide content and pH, where free iron oxide content was positively correlated with amorphous iron oxide, DOC and pH. The Cd immobilization mechanisms potentially involved either (1) formation of insoluble hydroxides at elevated pH; (2) participation of biomolecules released from PION in ligand complexation with Cd and (3) co-precipitated of Cd during the formation of iron oxides. This study provided new insights into the potential effects of PION applications for practical Cd immobilization in contaminated soils.


Assuntos
Cádmio/análise , Poluição Ambiental/prevenção & controle , Compostos Férricos/química , Nanopartículas Metálicas/química , Poluentes do Solo/análise , Anaerobiose , Solo/química
4.
Sci Total Environ ; 627: 314-321, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426154

RESUMO

To effectively reuse adsorbent in removal of Cd (II), magnetic modification was considered as an alternative. In this study, iron oxide nanoparticles (IONPs) synthesized from the extract of Excoecaria cochinchinensis Lour leaves were modified by low-temperature calcination, and used to remove Cd (II). Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and magnetic properties analysis confirmed the successful synthesis of nanoscale magnetic FeOC composite. Response surface methodology (RSM) served to optimize the adsorption of Cd (II) by IONPs based on Box-Behnken design (BBD). According to the quadratic model, the effect of each factor on the removal of Cd (II) by IONPs was: pH > dosage > ionic strength > temperature. In percentage terms, 98.50% of Cd (II) (10 mg L-1) was removed when the pH, absorbent dosage, temperature and ionic strength conditions were 8.07, 2.5 g L-1, 45 °C, and 0.07 mol L-1, respectively. The adsorption of Cd (II) by IONPs is consistent with pseudo-second order kinetics and Langmuir adsorption isotherm models, indicating that the process of adsorption of Cd (II) by IONPs belongs to monolayer chemical adsorption. The -COOH, -COH, Cπ electron and ≡FeOH may be the binding sites for Cd (II) on the surface of IONPs. Overall, IONPs can be used to remove Cd (II) effectively from aqueous solution in a wide range of conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA