Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunopharmacol Immunotoxicol ; 44(1): 17-27, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821526

RESUMO

OBJECTIVE: Aberrant DNA replication is regarded as a component of cancer development. Minichromosome maintenance protein 7 (MCM7), which is critical for the initiation of DNA replication, is overexpressed in multiple malignancies. The effect of MCM7 on cell proliferation, apoptosis, and drug resistance of liver cancer and its mechanism were investigated in this study. METHODS: MCM7 expression in normal liver cells, liver cancer cell lines, and tissues, as well as adjacent tissues, was determined by qRT-PCR. CCK-8 and flow cytometry was performed to detect cell viability, apoptosis, and cell cycle, respectively. The related mRNA and protein expressions were detected by qRT-PCR and western blot. RESULTS: High expression of MCM7 was found in liver cancer tissues and cells, which results in notably lower survival time of patients. Cisplatin (DDP) could inhibit cell proliferation and affect MCM7 expression. Silencing of MCM7 inhibited cell viability, promoted cell apoptosis, arrested cell cycle at G1 phase, and enhanced the effect of DDP on cancer cells, while overexpression of MCM7 did the opposite. Moreover, silencing of MCM7 inhibited cyclinD1 and Ki-67 expressions. The overexpression of MCM7 increased phosphorylation levels of PI3K and AKT, activated the PI3K/AKT pathway, and weakened the inhibitory effect of DDP on the PI3K/AKT pathway. CONCLUSION: Silencing of MCM7 may inhibit cell proliferation and promote apoptosis by regulating the PI3K/AKT pathway to affect the cell cycle, thus affecting the development of liver cancer, and improving the sensitivity of liver cancer cells to DDP.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas , Componente 7 do Complexo de Manutenção de Minicromossomo , Transdução de Sinais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Bioengineered ; 12(2): 11124-11135, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34923912

RESUMO

to explore the value of transcatheter arterial chemoembolization (TACE) combined with targeted nanoparticle delivery system for sorafenib (SFB) to treat hepatocellular carcinoma (HCC) with microvascular invasion. 42 HCC patients with microvascular invasion after liver cancer surgery were selected from our hospital from December 2020 and February 2021. Patients were divided into experimental group and control group based on their willingness. Patients in experimental group (18 cases) were treated with combination therapy of TACE and Ab-SFB-NP system; while patients in control group (24 cases) took TACE and non-nano drug delivery system. There was no obvious difference in liver function and blood test results between two groups of patients before treatment and one month after treatment (P > 0.05). Three months after treatment, differences of alanine aminotransferase (ALT) were statistically significant (P < 0.05); while differences of other test results were not (P > 0.05). The disease control rate (DCR) of patients in experimental group was higher slightly (P > 0.05). The incidence of adverse reactions of patients in experimental group was lower than the control group and the differences were statistically significant (P < 0.05). After three months of TACE, the DCR in the experimental group was significantly higher compared to control group. The toxic reactions of taking SFB with Ab-SFB-NP nano-drug delivery system mainly included hand-foot syndrome, diarrhea, and bleeding, the toxic reactions were mainly at level 1 ~ 2. After symptomatic treatment, the toxicity was effectively controlled, so the security was high.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/tratamento farmacológico , Cateterismo , Quimioembolização Terapêutica , Neoplasias Hepáticas/tratamento farmacológico , Microvasos/patologia , Nanopartículas/química , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/fisiopatologia , Quimioembolização Terapêutica/efeitos adversos , Feminino , Humanos , Fígado/patologia , Fígado/fisiopatologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Sorafenibe/efeitos adversos
3.
J Recept Signal Transduct Res ; 41(5): 434-441, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32998623

RESUMO

MiR-145-5p is high-expressed in human vascular endothelial cells (HUVECs) and alternatively activated macrophages (M2). However, whether miR-145-5p can reduce HUVEC damage by regulating macrophage immunophenotype is less reported. THP-1 was stimulated by Phorbolate-12-myristate-13-acetate, LPS and IFN-γ, and IL-4 to differentiate into macrophages (M0, M1 and M2). The expressions of macrophage markers were detected by Western blotting, and the expressions of miR-145-5p and kruppel-like factor-14 (KLF14) were detected by qRT-PCR. Dual-luciferase reporter assay was used to analyze the targeted relationship of miR-145-5p and KLF14. HUVEC injury was induced by LPS and then co-cultured with M1 transfected by miR-145-5p mimic. The effect of miR-145-3p on proliferation and metastasis of LPS-induced HUVECs was detected by MTT, clone formation, scratch assay and Transwell. We found that the expression of miR-145-5p was higher in M2 than that in M1. MiR-145-5p expression was down-regulated during M2-to-M1, but up-regulated during M1-to-M2. The expressions of IL-1ß and iNOS were down-regulated, while the protein expressions of CCL17 and Arg-1 were up-regulated by miR-145-5p mimic in M0. The viability, proliferation, migration and invasion of HUVECs were promoted, however, LDH activity of the HUVECs was inhibited by mimics. In addition, KLF14 was predicted as the target gene for miR-145-5p in HUVECs. Collectively, our results demonstrate that miR-145-5p inhibited cell proliferation of LPS-treated HUVECs possibly through regulating macrophage polarization to M2.


Assuntos
Movimento Celular , Células Endoteliais/fisiologia , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Lipopolissacarídeos/efeitos adversos , Ativação de Macrófagos , MicroRNAs/genética , Apoptose , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/patologia , Humanos , Fatores de Transcrição Kruppel-Like/genética
4.
Stem Cell Res Ther ; 11(1): 395, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928296

RESUMO

BACKGROUND: Bone mesenchymal stem cells (MSCs) can promote liver regeneration and inhibit inflammation and hepatic fibrosis. MSCs also can serve as a vehicle for gene therapy. Smad7 is an essential negative regulatory gene in the TGF-ß1/Smad signalling pathway. Activation of TGF-ß1/Smad signalling accelerates liver inflammation and fibrosis; we therefore hypothesized that MSCs overexpressing the Smad7 gene might be a new cell therapy approach for treating liver fibrosis via the inhibition of TGF-ß1/Smad signalling. METHODS: MSCs were isolated from 6-week-old Wistar rats and transduced with the Smad7 gene using a lentivirus vector. Liver cirrhosis was induced by subcutaneous injection of carbon tetrachloride (CCl4) for 8 weeks. The rats with established liver cirrhosis were treated with Smad7-MSCs by direct injection of cells into the main lobes of the liver. The expression of Smad7, Smad2/3 and fibrosis biomarkers or extracellular matrix proteins and histopathological change were assessed by quantitative PCR, ELISA and Western blotting and staining. RESULTS: The mRNA and protein level of Smad7 in the recipient liver and serum were increased after treating with Smad-MSCs for 7 and 21 days (P < 0.001). The serum levels of collagen I and III and collagenase I and III were significantly (P < 0.001) reduced after the treatment with Smad7-MSCs. The mRNA levels of TGF-ß1, TGFBR1, α-SMA, TIMP-1, laminin and hyaluronic acid were decreased (P < 0.001), while MMP-1 increased (P < 0.001). The liver fibrosis score and liver function were significantly alleviated after the cell therapy. CONCLUSIONS: The findings suggest that the MSC therapy with Smad7-MSCs is effective in the treatment of liver fibrosis in the CCl4-induced liver cirrhosis model. Inhibition of TGF-ß1 signalling pathway by enhancement of Smad-7 expression could be a feasible cell therapy approach to mitigate liver cirrhosis.


Assuntos
Cirrose Hepática Experimental , Células-Tronco Mesenquimais , Animais , Terapia Genética , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/terapia , Cirrose Hepática Experimental/patologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteína Smad7/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
5.
Exp Ther Med ; 14(3): 2568-2576, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28962196

RESUMO

Mesenchymal stem cells (MSCs) are able to differentiate into hepatocytes, promote the regeneration of hepatic cells and inhibit the progression of hepatic fibrosis. Transforming growth factor (TGF)-ß1 is one of the key factors in the development of liver fibrosis, which also promotes extracellular matrix (ECM) formation. Drosophila mothers against decapentaplegic 7 (Smad7) is an essential negative regulator in the TGF-ß1/Smad signaling pathway. In the present study, bone mesenchymal stem cells (BMSCs) were isolated from rat bone marrow and transfected with lentiviral vectors carrying the Smad7 gene. Smad7-enhanced green fluorescent protein (EGFP)-BMSCs stably expressing Smad7 were subsequently co-cultured with hepatic stellate cells (HSCs) for 48 h. Smad7 and TGF-ß1 levels in the culture medium were detected using ELISA, and the levels of collagen (Col) I, Col III, laminin (LN) and hyaluronic acid (HA) were measured using immunoassays. The early apoptosis rates of HSCs were determined via flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to evaluate the mRNA and protein expression profiles, respectively. The results indicated that Smad7-EGFP-BMSCs stably expressing Smad7 were successfully constructed. Upon co-culturing with rat Smad7-EGFP-BMSCs, the early apoptotic rate of HSCs was significantly increased (P<0.05). Levels of Smad7 in the culture medium were also significantly increased (P<0.05), whereas the levels of TGF-ß1, Col I, Col III, LN and HA were significantly decreased (P<0.05). Furthermore, the mRNA and protein levels of Smad7 and matrix metalloproteinase 1 were significantly increased (P<0.05), whereas those of TGF-ß1, α-SMA, Smad2, smad3, TGF-ß receptor I, Col I, tissue inhibitors of metalloproteinase-1 and Col III were significantly decreased. The results of the present study suggest that rat BMSCs overexpressing Smad7 may inhibit the fibrosis of HSCs by regulating the TGF-ß1/Smad signaling pathway. This provides a novel insight into future treatments for liver fibrosis.

6.
Oncol Lett ; 12(5): 4061-4067, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27895772

RESUMO

Evidence is rapidly accumulating that long non-coding RNAs (lncRNAs) are involved in human tumorigenesis and are dysregulated in multiple cancers, including hepatocellular carcinoma (HCC). lncRNAs can regulate essential pathways that contribute to tumor initiation and progression with tissue specificity, which suggests that lncRNAs may be valuable biomarkers and therapeutic targets. HOX transcript antisense intergenic RNA (HOTAIR) has previously been demonstrated to be an oncogene and a negative prognostic factor in a variety of cancers; however, the factors that contribute to the upregulation of HOTAIR and the interaction between HOTAIR and microRNAs (miRNAs or miRs) are largely unknown. In the present study, the expression levels of HOTAIR, forkhead box C1 (FOXC1) and miRNA-1 were examined in 50 matched pairs of HCC and HCC cells. The effects of HOTAIR on HCC cell proliferation were tested using trypan blue exclusion assay. The effect of HOTAIR on HCC growth in vivo was determined in a (nu/nu) mouse model. A computational screening of HOTAIR promoter was conducted to search for transcription factor-binding sites. FOXC1 binding to the promoter region of HOTAIR was confirmed using a chromatin immunoprecipitation assay. A search for miRNAs that had complementary base paring with HOTAIR was performed utilizing an online software program. The interaction between miR-1 and HOTAIR was examined using a luciferase reporter assay. Gain and loss of function approaches were used to determine the changes of HOTAIR or miR-1 expression. The relative levels of FOXC1 and HOTAIR expression in HCC tissues and HepG2 cells were significantly higher than those in normal liver LO2 cells and adjacent carcinoma tissues; the relative expression of miR-1 exhibited the opposite pattern. Overexpression of HOTAIR promoted HCC cell proliferation and progression of tumor xenografts. The present authors have demonstrated that FOXC1 binds to the upstream region of HOTAIR in HCC cells and that FOXC1 activates lncRNA HOTAIR expression in HCC HepG2 cells, which suggests that HOTAIR harbors a miRNA-1 binding site. The present data revealed that this binding site is vital for the regulation of miRNA-1 by HOTAIR. Furthermore, HOTAIR negatively regulated the expression of miRNA-1 in HepG2 cells. Additionally, the present study demonstrated that the oncogenic activity of HOTAIR is in part based on the negative regulation of miR-1. Taken together, these results suggest that HOTAIR is a FOXC1-activated driver of malignancy, which acts in part through the repression of miR-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA