Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30437, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726179

RESUMO

Background: Sotorasib has been approved for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Due to the limitations of clinical trials, potential adverse events (AEs) and long-term safety issues cannot be detected. The presented study aimed to evaluate sotorasib-associated AEs using the FDA Adverse Event Reporting System (FAERS) database. Methods: Post-marketing AE reports of sotorasib in the database were collected for analysis. Disproportionality analyses, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), information component (IC) and empirical bayes geometric mean (EBGM) algorithms, were performed to mine the signals of sotorasib-associated AEs. The median duration, quartiles and the Weibull shape parameter (WSP) test were used to assess the onset time data. Results: The database contained 1538 cases of sotorasib as primary suspect (PS), with 27 signals detected, scattering in 5 SOCs. The SOC of hepatobiliary disorders (182, ROR 4.48, PRR 4.07, IC 2.02, EBGM 4.07) met the four methodological thresholds. The median onset time of sotorasib-associated AEs was 42 days (interquartile range [IQR] 14-86.75 days). Different SOCs had different types of risk over time. Conclusion: After obtaining marketing authorization, the study identified all potentially relevant adverse event (AE) signals expected to have a reporting frequency higher than anticipated and characterized them during sotorasib treatment.

2.
Tree Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775231

RESUMO

Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals, and materials. By enhancing the content of plant biomass through endophyte symbiosis, it can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG) and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase (HxK), increased. In addition, the contents of glucose, fructose, starch and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase (NINV) and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.

3.
J Environ Manage ; 359: 120937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677231

RESUMO

The Chinese government promotes nuclear energy development in the context of mitigating climate change. However, the large-scale development is still facing challenges related to the knowledge gap among the general public and the potential "not-in-my-back-yard" objection. Based on a representative national survey, we analyze Chinese people's knowledge and perceptions of nuclear energy and estimate their willingness-to-accept the potential risks of new nuclear programs in neighborhoods via the Contingent Valuation Method. Generally, more than half of people do not know anything about nuclear energy. The main factors influencing public knowledge are identified, such as the residential distance to existing nuclear power stations and the frequency of internet use. Moreover, approximately 12% of individuals with some knowledge seem to be willing to accept new nuclear power plants in their neighborhoods with no compensation needed. Specifically, the perceptions of nuclear risks and pollution from fossil fuels are significant factors influencing people's acceptance of nuclear energy. Although public knowledge does not directly influence acceptance, more knowledge seems to reduce risk perception and increase benefit perception. The residential distance to exiting nuclear stations has limited effects on people's acceptance of newly planned nuclear programs for those living in the same county with some knowledge. In general, a typical Chinese household is willing to accept USD $5.66 every month or USD $67.97 every year to bear the potential risks of the new nuclear program in neighborhoods. Significant practical implications that can be transferable to other new energy technologies and countries or regions are provided.


Assuntos
Energia Nuclear , China , Humanos , Inquéritos e Questionários , Conhecimento , Centrais Nucleares , Percepção , Mudança Climática , Opinião Pública
4.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38079510

RESUMO

Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.


Assuntos
Hypocreales , Lycium , Lycium/metabolismo , Clorofila , Nitrogênio , Solo , Fotossíntese , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II , Isótopos
5.
Head Neck ; 46(1): 177-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930037

RESUMO

BACKGROUND: The objective of this study was to examine the independent prognostic factors of laryngeal cancer with synchronous or metachronous lung cancer (LCSMLC), and to generate and verify a clinical prediction model. METHODS: In this study, laryngeal cancer alone and LCSMLC were defined using the Surveillance, Epidemiology, and End Results (SEER) database. Risk factors of patients with LCSMLC were analyzed through univariate and multivariate logistic regression analysis. Independent prognostic factors were selected by Cox regression analyses, on the basis of which a nomogram was constructed using R code. Kaplan-Meier survival analyses were applied to test the application of a risk stratification system. Finally, we conducted a comparison of the American Joint Committee on Cancer (AJCC) staging system of laryngeal cancer with the new model of nomogram and risk stratification. For further validation of the nomogram, data from patients at two Chinese independent institutions were also analyzed. RESULTS: According to the eligibility criteria, 32 429 patients with laryngeal cancer alone and 641 patients with LCSMLC from the SEER database (the training cohort) and additional 61 patients from two Chinese independent institutions (the external validation cohort) were included for final analyses. Compared with patients with laryngeal cancer who did not have synchronous or metachronous lung cancer, age, sex, race, primary site of laryngeal cancer, grade, and stage were risk factors for LCSMLC, while marriage, surgery, radiation therapy, and chemotherapy are not their risk factors. Age, two cancers' interval, pathological type, stage, surgery, radiation, primary lung site, and primary throat site were independent prognostic predictors of LCSMLC. The risk stratification system of high-, medium-, and low-risk groups significantly distinguished the prognosis in different patients with LCSMLC, regardless of the training cohort or the validation cohort. Compared with the 6th AJCC TNM stage of laryngeal cancer, the new model of nomogram and risk stratification showed an improved net benefit. CONCLUSIONS: Age, sex, race, primary site of laryngeal cancer, grade, and stage were risk factors for LCSMLC. An individualized clinical prognostic predictive model by nomogram was generated and validated, which showed superior prediction ability for LCSMLC.


Assuntos
Neoplasias Laríngeas , Neoplasias Pulmonares , Humanos , Neoplasias Laríngeas/terapia , Neoplasias Pulmonares/terapia , Nomogramas , Prognóstico , Modelos Estatísticos , Pulmão
6.
Front Plant Sci ; 14: 1225028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877079

RESUMO

A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.

7.
Gene ; 888: 147797, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37708922

RESUMO

NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.


Assuntos
Transportadores de Nitrato , Prunus avium , Nitratos/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Tree Physiol ; 43(11): 1986-2000, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37581589

RESUMO

Lectin receptor-like kinases (LecRLKs), a large family of plant receptor-like kinases, play an important role in plant response to abiotic stresses. However, little information is available about the roles of LecRLKs in the salt stress response of sweet cherry (Prunus avium). Here, an L-type LecRLK gene (PaLectinL7) was characterized from sweet cherry. Subcellular localization analysis revealed that PaLectinL7 is a plasma membrane protein. The expression of PaLectinL7 was up-regulated by salt, drought and exogenously gibberellin treatments. Overexpression of PaLectinL7 in the roots of Gisela 6 enhanced its tolerance to salt stress. Additionally, transcriptome analysis showed that lignin metabolic-related genes were regulated by PaLectinL7 overexpression. Meanwhile, the lignin contents and associated enzymes (CAD and COMT) rose concurrently with PaLectinL7 overexpression under salt stress. We also found that PaCAD1, a key enzyme involved in lignin metabolism, interacted with PaLectinL7 and could be phosphorylated by PaLectinL7 in vitro, suggesting that PaLectinL7 may regulate the enzyme activity of PaCAD1. Therefore, these results indicated that PaLectinL7, as a membrane-bound regulator, promoted lignin deposition by regulating the activities of enzymes related to lignin metabolism, thus enhancing salt tolerance.


Assuntos
Prunus avium , Prunus avium/genética , Lignina/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Secas
9.
Environ Sci Pollut Res Int ; 30(17): 50002-50012, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787080

RESUMO

Promoting the use of reusable takeaway food container (RTFC) in takeaway industry is an effective way to reduce the negative environmental impacts caused by single-use plastic containers. This study intended to figure out the barriers to the new business model deployment through evaluating the economic costs and benefits of RTFC from a stakeholder's perspective. Taking the pilot RTFC project at a university in Guangdong province as a case, we established a holistic cost and benefit analysis framework from a stakeholder's perspective. Both the costs and benefits with and without a market price of each stakeholder were evaluated using market price method and contingent valuation method. The analysis result shows that while shifting to reusable takeaway food container, the costs and benefits of all the main stakeholders changed. The net benefit of consumers is positive about 360 thousand yuan during 2020-2025, while the platform company, the university and the restaurants gain negative net benefits ranging from - 20 to - 470 thousand yuan under current operation situation, which may hinder the sustainable development of this new business model. However, the sensitivity analysis shows that all the stakeholders could gain a positive net benefit by adjusting the rental price, cleaning price and packaging price, as well as optimizing the location of recycling cabinets.


Assuntos
Embalagem de Alimentos , Indústrias , Humanos , Análise Custo-Benefício , China , Desenvolvimento Sustentável
10.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835035

RESUMO

Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.


Assuntos
Apocynum , Germinação , Antioxidantes , Apocynum/fisiologia , Cloreto de Sódio , Sementes/fisiologia , Estresse Salino , Estresse Fisiológico
11.
Plant Physiol Biochem ; 195: 266-274, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652848

RESUMO

Polyploid plants are usually salt tolerant, but the underlying mechanisms remain fragmental. This study aimed to dissect salt resistance of tetraploid honeysuckle (Lonicera japonica Thunb.) from ion balance, osmotic adjustment and antioxidant defense by contrasting with its autodiploid through pot experiments. Less salt-induced reduction in leaf and root biomass confirmed higher tolerance in tetraploid honeysuckle, and moreover, its greater stability of photosynthetic apparatus was verified by mild influence on delayed chlorophyll fluorescence transients. Compared with the diploid, greater root Na+ exclusion helped alleviate salt-induced decrease in leaf K+/Na+ for maintaining ion balance in tetraploid honeysuckle, and relied on Na+/H+ antiporter activity, because their difference of root Na+ exclusion disappeared after applying a specific inhibitor of Na+/H+ antiporter. Lower reduction in leaf relative water content suggested higher tolerance to osmotic pressure in tetraploid honeysuckle under salt stress, which hardly resulted from osmotic adjustment given the similar decrease extent of leaf osmotic potential with that in the diploid. In contrast to significant elevated leaf lipid peroxidation and superoxide dismutase and ascorbate peroxidase activities in the diploid, no obvious changes in them suggested that tetraploid honeysuckle never suffered salt-induced oxidative stress. According to more accumulated leaf chlorogenic acid and phenolics and greater elevated leaf phenylalanine ammonia-lyase activity and transcription, leaf phenolic synthesis was enhanced greater in tetraploid honeysuckle upon salt stress, which might serve to prevent oxidative threat by consuming reducing power. In conclusion, polyploidy enhanced salt tolerance in honeysuckle by maintaining ion homeostasis and water balance and preventing oxidative stress.


Assuntos
Antioxidantes , Lonicera , Tolerância ao Sal , Tetraploidia , Homeostase , Água
12.
Plant Physiol Biochem ; 194: 214-222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427383

RESUMO

Carbon nanotubes (CNTs) regulate growth in many plants. Carbohydrates provide energy and carbon skeleton for cell growth. However, how CNTs influence plant carbohydrate metabolism remains largely unknown. For a comprehensive understanding the response of carbohydrate metabolism and accumulation in leaves of crabapple (Malus hupehensis Rehd) to single-walled carbon nanotubes (SWCNTs), the expression of key enzymes and genes involved in apple sugar metabolism was investigated. In this report, TEM showed that SWCNTs particles were absorbed in apple leaf. Foliar application of 10 and 20 mg/L SWCNTs promoted chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. SWCNTs up-regulate the activity of aldose-6-phosphate reductase (A6PR), accompanied by increased concentration of photosynthetic assimilate‒sorbitol. However, the activities of sucrose phosphate synthase (SPS) and the accumulation of sucrose did not change significantly in SWCNTs-sprayed apple leaves compared with the control. In addition, the activities of photoassimilate degradation enzyme (sorbitol dehydrogenase, SDH; sucrose synthase, SUSY; neutral invertase, NINV) and hexose degradation enzyme (fructokinase, FRK; hexokinase, HK) were higher in SWCNTs-treated apple leaves than that in the control leaves. Quantitative real-time polymerase chain reaction (qRT‒PCR) results indicated that the expression of genes associated with sugar metabolism changed significantly after SWCNTs application. Taken together, we propose that spraying apple leaves with 10 and 20 mg/L SWCNTs can improve photosynthetic activity and accelerate carbohydrate metabolism in apple leaves. Our results provide insight into understanding the biological effects of CNTs in plants and are valuable for continued use of SWCNTs in agri-nanotechnology.


Assuntos
Malus , Nanotubos de Carbono , Metabolismo dos Carboidratos/genética , Fotossíntese , Carboidratos , Malus/genética , Sacarose/metabolismo , Folhas de Planta/metabolismo
13.
Front Plant Sci ; 13: 1020857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237502

RESUMO

Hypericum perforatum, commonly known as St John's wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis are reported based on transcriptomic data collected from H. perforatum seedlings grown at 15 and 22°C. Plants grown at a cooler temperature exhibited changes in macro- and micro-leaf anatomy including thicker leaves, an increased number of secretory cell, chloroplasts, mitochondria, starch grains, thylakoid grana, osmiophilic granules and hemispherical droplets. Moreover, genes encoding for photosynthesis (64-genes) and energy (35-genes) as well as Hyp biosynthesis (29-genes) were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant's ability to accumulate enhanced Hyp levels at low temperatures.

14.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142587

RESUMO

Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides, flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demonstrated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity) at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed. Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid biosynthesis as well as growth and development. The expression levels of key genes involved in polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes of physiological characteristics. The combinational analysis of metabolites with transcriptomics provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum during growth stages.


Assuntos
Cynomorium , Triterpenos , Antioxidantes/metabolismo , Cynomorium/genética , Cynomorium/metabolismo , Flavonoides , Hormônios , Polissacarídeos , Açúcares , Fatores de Transcrição , Transcriptoma
15.
J Environ Manage ; 323: 116170, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115243

RESUMO

Taking variations in PM2.5 as indicators for assessing the performance of authority in air quality management will probably lead to misjudgment, as PM2.5 concentration is affected not only by anthropogenic emissions but also by uncontrollable circumstances. To solve this problem, we proposed a decomposition method to attribute the variations in PM2.5 to the contributions of meteorological conditions, cross-regional transports of pollutants, secondary aerosols, and local emissions. This method estimated the relationship between PM2.5 concentration and the various influencing factors using a semi-parametric generalized additive model. A case study was conducted in Shenyang, a heavily polluted city in northeast China, based on up to 595,000 hourly data samples from 2014 to 2017. The decomposition results indicated that the average PM2.5 in 2017 decreased by 39.80% compared with 2014, far exceeding the government's target of 15%, but only 11.79% of the decrease was benefited from the control of local emissions. The severe pollution event that occurred in November 2015 was induced by the combination of massive emissions from heating and meteorological conditions conducive to pollutant accumulation. Furthermore, the approach we proposed can be extended to any location that has monitoring data on air pollutant concentrations and meteorological conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano
16.
Plant Cell Rep ; 41(10): 2037-2088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904590

RESUMO

KEY MESSAGE: Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.


Assuntos
Arabidopsis , Prunus avium , Arabidopsis/genética , Cisteína/metabolismo , Filogenia , Prunus avium/genética , Tolerância ao Sal/genética
17.
Plant Physiol Biochem ; 184: 137-143, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653939

RESUMO

Abundant studies have revealed that single-walled carbon nanotubes (SWCNTs) regulate plant growth. However, whether or how SWCNTs influence plant wood formation remains largely unknown. In this report, we found that SWCNTs had positive effects on poplar growth, as reflected by significantly increased plant height, leaf size, and fresh and dry weight. Transmission electron microscopy (TEM) images showed that the SWCNTs were absorbed in the exposed poplar root cells. A relatively higher content of cellulose and lignin was observed in the SWCNTs-treated poplar stems than in those of the control plants. It also showed darker phloroglucinol staining in the stems of exposed plants than that in control plants. Further analysis showed that the activities of key enzymes related to cellulose synthesis (cellulose synthase, CesA) and lignin biosynthesis (phenylalanine ammonia-lyase, PAL; cinnamate 4-hydroxylase, C4H; 4-coumarate:CoA ligase, 4CL; cinnamyl alcohol dehydrogenase, CAD) increased significantly after SWCNTs treatment. Consistent with the change trend of enzyme activity, the relative expression levels of a few lignin- and cellulose-related genes were activated by SWCNTs. Taken together, we proposed that SWCNTs have positive effects on poplar wood formation by modifying the expression of enzymes involved in the cellulose and lignin synthesis pathways. Our data suggest the modifications of wood formation through SWCNTs application could be a useful strategy for improvement of wood bioengineering.


Assuntos
Nanotubos de Carbono , Populus , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Populus/genética , Populus/metabolismo , Madeira/metabolismo
18.
Mycology ; 13(2): 119-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711328

RESUMO

Yunnan Province is one of the rich biodiversity hotspots with abundant resources of lignicolous freshwater fungi. A total of 281 species of lignicolous freshwater fungi from 1986 to the present in Yunnan Province. They are mostly distributed in the classes Dothideomycetes and Sordariomycetes, a few species in the Eurotiomycetes and Leotiomycetes, and rarely reported in Orbiliomycetes and Pezizomycetes. Lignicolous freshwater fungi can decompose lignocellulose substrates and release energy and nutrients, and thus playing an important role in freshwater environment. This study briefly reviewed the biodiversity and taxonomic status of lignicolous freshwater fungi in Yunnan, the ecological functions of lignicolous freshwater fungi, factors affecting community distribution, application status, and research difficulties.

19.
Plants (Basel) ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631780

RESUMO

Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA