Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 34045-34056, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859169

RESUMO

In this paper, a polarization modulated metasurface to improve the magnitude and expand the bandwidth of radar cross section (RCS) reduction is presented. Two physical mechanisms are responsible for the reflection diffusion of the proposed metasurface. One is the functionality of controlling the spatial distribution of polarization response, and the other is the capability of spanning the entire 2π phase range by making full use of the variable sizes and height difference of unit cells to achieve superwideband phase cancellation. A 10 dB monostatic RCS reduction is obtained from 3.87 to 92.89 GHz (a ratio bandwidth of 24:1) for both polarizations under normal incidence by simulation, which is identical to experimental results and theoretical analysis. The proposed method for suppressing vector fields in an extremely wide band may hold promising potentials for suppression of acoustic, electromagnetic, optical and other elastic waves.

2.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886971

RESUMO

Histone deacetylases (HDACs), widely found in various types of eukaryotic cells, play crucial roles in biological process, including the biotic and abiotic stress responses in plants. However, no research on the HDACs of Fagopyrum tataricum has been reported. Here, 14 putative FtHDAC genes were identified and annotated in Fagopyrum tataricum. Their gene structure, motif composition, cis-acting elements, phylogenetic relationships, protein structure, alternative splicing events, subcellular localization and gene expression pattern were investigated. The gene structure showed FtHDACs were classified into three subfamilies. The promoter analysis revealed the presence of various cis-acting elements responsible for hormone, abiotic stress and developmental regulation for the specific induction of FtHDACs. Two duplication events were identified in FtHDA6-1, FtHDA6-2, and FtHDA19. The expression patterns of FtHDACs showed their correlation with the flavonoid synthesis pathway genes. In addition, alternative splicing, mRNA enrichment profiles and transgenic analysis showed the potential role of FtHDACs in cold responses. Our study characterized FtHDACs, providing a candidate gene family for agricultural breeding and crop improvement.


Assuntos
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Temperatura
3.
Opt Lett ; 47(14): 3507-3510, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838714

RESUMO

A 3D-printed all-dielectric metasurface is presented in this Letter which can generate an accelerating beam with a circularly symmetric non-spreading transverse profile that can propagate along arbitrary convex trajectories. The curved trajectory is mapped to the corresponding direct-space spatial phases by the basic cube units with different geometrical heights. The required phase distribution is derived in detail based on the enveloping theory of differential geometry and the Bessel beam generation method. A metasurface with a preset trajectory is simulated and measured to demonstrate the validity of the phase distribution calculated by the proposed theory. The full-wave simulation and measurement results verify that the Bessel-like beam whose intensity follows a curved (off-axis) trajectory can be produced by the proposed metasurface. The generated hybrid beam merges the advantages of non-accelerating and accelerating diffractive-free beams. Therefore, the proposed metasurface has great potential in ultrahigh-speed communication, secure communication, near-field imaging, wireless energy transmission applications, and so on. The all-dielectric characteristic provides the proposed metasurface with the competitive advantages of low cost and easy large-scale processing.

4.
Opt Express ; 30(5): 7793-7805, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299534

RESUMO

An optical transparent metasurface for dual-band Wi-Fi shielding is presented in this paper. The unit cell of the proposed metasurface is composed of a hexagonal ring and a three-petal oval flower which resonate at 2.4 and 5.5 GHz, respectively. The corresponding equivalent circuit is modelled to better understand the physical phenomena of electromagnetic shielding. Based on transmission line theory and curve fitting technique, a convenient and efficient method for extracting permittivity of substrate is presented. Simulation results show that the proposed metasurface is insensitive to the polarization of incoming wave under normal incidence and offers excellent angular stability. For verifying the design, two prototypes are fabricated using different manufacturing technologies, flexible printed circuit and ink-jet printing of silver nano-particles. The measured results are in good agreement with the simulated ones. The proposed metasurface has potential applications of electromagnetic wave suppression and information security in indoor environments.

5.
Opt Lett ; 46(21): 5441-5444, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724496

RESUMO

In this Letter, a metasurface combined with emerging 3D printing technology is proposed. The proposed metasurface regards the simple cube as the unit cell, and the height of the cube is the only variable. A nearly linear transmission phase range covering 360° operating at 20 GHz is obtained when the height is regulated in [2.26 mm, 11.20 mm]. Therefore, the proposed unit cell can be adopted to any metasurface with various functions. Taking the generation of a non-diffractive Bessel beam as an example, two metasurfaces composed of 30×30 units with different focusing directions are designed based on non-diffractive theory and the generalized law of refraction. Two prototypes are 3D printed and measured by a near-field scanning system. The measured results validate our design with satisfactory focusing and beam deflection performance. Additionally, the 3D printed metasurface has lower cost and a shorter processing cycle, and avoids metal loss. Therefore, a 3D printed metasurface is an excellent candidate that can be applied in millimeter wave or even higher frequency bands.

6.
Opt Express ; 29(22): 35938-35950, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809017

RESUMO

In this work, an ultrawideband and high-efficient polarization conversion metasurface (PCM) is proposed, which can efficiently convert linearly polarized waves into cross-polarized waves in an ultra-wide frequency range. The unit cell of the proposed PCM is composed of two pairs of L-shaped metallic patches covered by a dielectric superstrate and an air-based substrate attached with a metallic ground. The PCM has an operating band from 3.37 to 22.07 GHz with the polarization conversion ratio (PCR) over 90% under the normal incidence, which the ratio bandwidth (fH/fL) is 6.5:1. The PCR can achieve 100% at seven resonant frequencies. The equivalent circuit model is analyzed to explain the fundamental cause of the PCM's multi-resonance and polarization conversion behaviors. In addition, all possible near-field interactions among the resonator, the superstrate, and the ground sheet can be accurately calculated using interference theory, which reveals the underlying physical mechanisms of the multi-resonance metasurface. The theoretical calculated, numerically simulated, and measured results are in good agreement. Compared to other PCMs, the proposed PCM has a simple geometry structure but an ultrawideband and high PCR property.

7.
Sci Rep ; 11(1): 12499, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127770

RESUMO

This paper presents a miniaturized ultra-wideband (UWB) antipodal Vivaldi antenna (AVA) array with low-scattering characteristics integrated a hybrid diffusive-absorptive metasurface. Periodic elliptical slots at the outer edges and a dielectric lens are utilized for antenna element to improve performances including miniaturized size, wide bandwidth, and high gain. The optimized element is fabricated and measured, the results demonstrate that the - 10 dB impedance bandwidth is 4.5-50 GHz with a ratio bandwidth (fH/fL) of 11.1:1, and the maximum gain at 35 GHz is 12.7 dBi, which are in good agreement with simulation. By loading an optimized Minkowski-shaped metasurface as the ground reflector, which combines the multielement phase cancellation (MEPC) and EM absorption technology, the 4 × 4 array realizes a low radar cross section (RCS) without the radiation performance degradation. Simulated and measured results show that the proposed low-scattering array has a 10-dB RCS reduction band ranging from 5 to 50 GHz at normal incidence for both polarizations. Furthermore, the array structure shows extremely low-observable capability, which is larger than 15 dB of the RCS reduction from 7.1 to 50 GHz with a ratio bandwidth of 7.0:1. The results verify the feasibility of improving the performance of antenna and the UWB low-scattering functionality.

8.
Materials (Basel) ; 12(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810162

RESUMO

An ultrathin tunable absorber for the ultrahigh frequency (UHF) band is presented in this paper. The absorber is a single-layer structure based on the topology of a Salisbury screen, in which the conventional resistive layer is replaced by an active frequency-selective surface (AFSS) loaded with resistors and varactors. The reflectivity response of the absorber can be controlled by adjusting the reverse bias voltage for the varactors, which is verified by both simulated and measured results. The experimental results show that the reflectivity response of the absorber can be modulated below -10 dB over a frequency band ranging from 415 to 822 MHz. The total thickness of the absorber, 10 mm, is equivalent to only λ/72 of the lower limit frequency. The absorbing mechanism for the designed absorber is illustrated by simulating the volume loss density distributions. A detailed analysis is also carried out on the basis of these parameters, such as the AFSS shape, resistor, thickness of the foam, thickness and permittivity of the dielectric substrate, and incident angles, which contribute to the reflectivity of the AFSS absorber.

9.
Sci Rep ; 8(1): 8182, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802322

RESUMO

In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

10.
Sci Rep ; 7: 42283, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181593

RESUMO

In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA