Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644883

RESUMO

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38644354

RESUMO

BACKGROUND: There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS: We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS: MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS: Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

3.
BMC Med ; 22(1): 96, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443977

RESUMO

BACKGROUND: There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS: To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS: Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS: Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.


Assuntos
Aminopiridinas , Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Reposicionamento de Medicamentos , Análise da Randomização Mendeliana , Proteínas Serina-Treonina Quinases/genética
4.
Mol Neurobiol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324182

RESUMO

Observational studies have faced challenges in identifying replicable causes for amyotrophic lateral sclerosis (ALS). To address this, we employed an unbiased and data-driven approach to discover and explore potential causal exposures using two-sample Mendelian randomization (MR) analyses. In the phenotype discovery stage, we assessed 3948 environmental exposures from the UK Biobank and utilized ALS summary statistics (Europeans, 20,806 cases, 59,804 controls) as the outcome within a phenome-wide MR pipeline. Through a range of sensitivity analyses, two medication traits were identified to be protective for ALS. In the target exploration stage, we further conducted drug target MR analyses using the latest and trans-ethnic summary data on lipid-related traits and ALS (Europeans, 27,205 cases, 110,881 controls; East Asians, 1234 cases, 2850 controls). Our aim was to explore potential causal drug targets through six lipid-modifying effects. These comprehensive analyses revealed significant findings. Specifically, "cholesterol-lowering medication" and "atorvastatin" survived predefined criteria in the phenotype discovery stage and exhibited a protective effect on ALS. Further in the target exploration stage, we demonstrated that the therapeutic effect of APOB through LDL-lowering was associated with reduced ALS liability in Europeans (OR = 0.835, P = 5.61E - 5). Additionally, the therapeutic effect of APOA1 and LDLR through TC-lowering was associated with reduced ALS liability in East Asians (APOA1, OR = 0.859, P = 5.38E - 4; LDLR, OR = 0.910, P = 2.73E - 5). Overall, we propose potential protective effects of cholesterol-lowering drugs or statins on ALS risk from thousands of exposures. Our research also suggests APOB, APOA1, and LDLR as novel therapeutic targets for ALS and supports their potential protective mechanisms may be mediated by LDL-lowering or TC-lowering effects.

5.
NPJ Parkinsons Dis ; 9(1): 146, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865667

RESUMO

Genome­wide association studies (GWASs) have revealed numerous loci associated with Parkinson's disease (PD). However, some potential causal/risk genes were still not revealed and no etiological therapies are available. To find potential causal genes and explore genetically supported drug targets for PD is urgent. By integrating the expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets from multiple tissues (blood, cerebrospinal fluid (CSF) and brain) and PD GWAS summary statistics, a pipeline combing Mendelian randomization (MR), Steiger filtering analysis, Bayesian colocalization, fine mapping, Protein-protein network and enrichment analysis were applied to identify potential causal genes for PD. As a result, GPNMB displayed a robust causal role for PD at the protein level in the blood, CSF and brain, and transcriptional level in the brain, while the protective role of CD38 (in brain pQTL and eQTL) was also identified. We also found inconsistent roles of DGKQ on PD between protein and mRNA levels. Another 9 proteins (CTSB, ARSA, SEC23IP, CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated with the risk for PD based on only a single pQTL after multiple corrections. We also identified some proteins' interactions with known PD causative genes and therapeutic targets. In conclusion, this study suggested GPNMB, CD38, and DGKQ may act in the pathogenesis of PD, but whether the other proteins involved in PD needs more evidence. These findings would help to uncover the genes underlying PD and prioritize targets for future therapeutic interventions.

6.
J Neurol Neurosurg Psychiatry ; 94(11): 954-961, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37349091

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia. Currently, there are no effective disease-modifying treatments for AD. Mendelian randomisation (MR) has been widely used to repurpose licensed drugs and discover novel therapeutic targets. Thus, we aimed to identify novel therapeutic targets for AD and analyse their pathophysiological mechanisms and potential side effects. METHODS: A two-sample MR integrating the identified druggable genes was performed to estimate the causal effects of blood and brain druggable expression quantitative trait loci (eQTLs) on AD. A repeat study was conducted using different blood and brain eQTL data sources to validate the identified genes. Using AD markers with available genome-wide association studies data, we evaluated the causal relationship between established AD markers to explore possible mechanisms. Finally, the potential side effects of the druggable genes for AD treatment were assessed using a phenome-wide MR. RESULTS: Overall, 5883 unique druggable genes were aggregated; 33 unique potential druggable genes for AD were identified in at least one dataset (brain or blood), and 5 were validated in a different dataset. Among them, three prior druggable genes (epoxide hydrolase 2 (EPHX2), SERPINB1 and SIGLEC11) reached significant levels in both blood and brain tissues. EPHX2 may mediate the pathogenesis of AD by affecting the entire hippocampal volume. Further phenome-wide MR analysis revealed no potential side effects of treatments targeting EPHX2, SERPINB1 or SIGLEC11. CONCLUSIONS: This study provides genetic evidence supporting the potential therapeutic benefits of targeting the three druggable genes for AD treatment, which will be useful for prioritising AD drug development.


Assuntos
Doença de Alzheimer , Serpinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Encéfalo , Hipocampo , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
7.
Front Neurosci ; 17: 1177431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168926

RESUMO

Background: The etiology of amyotrophic lateral sclerosis (ALS) remains largely unknown. This study aimed to summarize the relationship between ALS and its genetic and non-genetic risk factors. Method: A search of relevant literature from PubMed, Embase, and Cochrane Database from inception to December 2022 was performed. Random-effects or fixed-effects models were performed by Stata MP 15.0 to pool multivariate or adjusted ratios (OR). PROSPERO registration number: CRD42022301549. Results: 230 eligible studies were included, of which 67 involved 22 non-genetic factors, and 163 involved genetic factors. Four aspects of non-genetic factors, including lifestyle, environmental and occupational exposures, pre-existing diseases/comorbidity and medical exposures, and others, were analyzed. Exposure to heavy metals (OR = 1.79), pesticides (OR = 1.46), solvents (OR = 1.37), previous head trauma (OR = 1.37), military service (OR = 1.29), stroke (OR = 1.26), magnetic field (OR = 1.22) and hypertension (OR = 1.04) are significant risk factors, but use of antidiabetics (OR = 0.52), high BMI (OR = 0.60 for obese and overweight vs. normal and underweight), living in urban (OR = 0.70), diabetes mellitus (OR = 0.83), and kidney disease (OR = 0.84) decrease the risk for ALS. In addition, eight common ALS-related genes were evaluated, the mutation frequencies of these genes were ranked from highest to lowest as SOD1 (2.2%), C9orf72 (2.1%), ATXN2 (1.7%), FUS (1.7%), TARDBP (0.8%), VCP (0.6%), UBQLN2(0.6%) and SQSTM1 (0.6%) in all the ALS patients. Conclusions: Our findings suggested that effective intervention for risk exposure and timely modification of lifestyle might prevent the occurrence of ALS. Genetic mutations are important risk factors for ALS and it is essential to detect genetic mutations correctly and scientifically. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=301549, identifier: CRD42022301549.

8.
J Neurol ; 270(8): 4013-4023, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148340

RESUMO

BACKGROUND: Genome-Wide Association Studies (GWAS) have identified numerous risk genes for Amyotrophic Lateral Sclerosis (ALS); however, the mechanisms by which these loci confer ALS risk are uncertain. This study aims to identify novel causal proteins in the brains of patients with ALS using an integrative analytical pipeline. METHODS: Using the datasets of Protein Quantitative Trait Loci (pQTL) (NpQTL1 = 376, NpQTL2 = 152), expression QTL (eQTL) (N = 452), and the largest ALS GWAS (NALS=27,205, NControls = 110,881), we performed a systematic analytical pipeline including Proteome-Wide Association Study (PWAS), Mendelian Randomization (MR), Bayesian colocalization, and Transcriptome-Wide Association Study (TWAS) to identify novel causal proteins for ALS in the brain. RESULTS: Using PWAS, we found that the altered protein abundance of 12 genes in the brain was associated with ALS. Three genes (SCFD1, SARM1 and CAMLG) were identified as lead causal genes for ALS with solid evidence (False discovery rate < 0.05, in MR analysis; PPH4 > 80% for Bayesian colocalization). Specifically, an increased abundance of SCFD1 and CAMLG led to an increased risk of ALS, whereas a higher abundance of SARM1 led to a decreased risk of developing ALS. TWAS showed that SCFD1 and CAMLG were related to ALS at the transcriptional level. CONCLUSIONS: SCFD1, CAMLG, and SARM1 exhibited robust associations and causality with ALS. The study findings provide novel clues for identifying potential therapeutic targets in ALS. Further studies are required to explore the mechanisms underlying the identified genes.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Estudo de Associação Genômica Ampla , Proteoma/genética , Teorema de Bayes , Encéfalo , Polimorfismo de Nucleotídeo Único
9.
Front Pharmacol ; 14: 1107248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909159

RESUMO

Background: Evidence from observational studies concerning the causal role of blood pressure (BP) and antihypertensive medications (AHM) on Parkinson's disease (PD) remains inconclusive. A two-sample Mendelian randomization (MR) study was performed to evaluate the unconfounded association of genetic proxies for BP and first-line AHMs with PD. Methods: Instrumental variables (IV) from the genome-wide association study (GWAS) for BP traits were used to proxy systolic BP (SBP), diastolic BP, and pulse pressure. SBP-associated variants either located within encoding regions or associated with the expression of AHM targets were selected and then scaled to proxy therapeutic inhibition of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, ß-blockers, calcium channel blockers, and thiazides. Positive control analyses on coronary heart disease (CHD) and stroke were conducted to validate the IV selection. Summary data from GWAS for PD risk and PD age at onset (AAO) were used as outcomes. Results: In positive control analyses, genetically determined BP traits and AHMs closely mimicked the observed causal effect on CHD and stroke, confirming the validity of IV selection methodology. In primary analyses, although genetic proxies identified by "encoding region-based method" for ß-blockers were suggestively associated with a delayed PD AAO (Beta: 0.115; 95% CI: 0.021, 0.208; p = 1.63E-2; per 10-mmHg lower), sensitivity analyses failed to support this association. Additionally, MR analyses found little evidence that genetically predicted BP traits, overall AHM, or other AHMs affected PD risk or AAO. Conclusion: Our data suggest that BP and commonly prescribed AHMs may not have a prominent role in PD etiology.

10.
Stem Cell Res ; 64: 102881, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944313

RESUMO

CHCHD2 mutations have been reported to cause Parkinson's disease (PD) by a loss of function in mitochondria. Most reported mutations, however, were missense, which was not the perfect model for a study of haploinsufficiency. Here, a truncated mutation, CHCHD2 p.Pro53Alafs*38, was identified in one familial early-onset PD patient. We generated a human-induced pluripotent stem cell (iPSC) line WCHSCUi001-A from this patient. The generated iPSCs resembled human embryonic stem cells, expressed pluripotency markers, exhibited a normal karyotype and could be differentiated into three germ layers in vitro. This line will be valuable for investigating the disease mechanisms and screening candidate drugs.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mutação/genética , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Eur J Neurol ; 29(11): 3218-3228, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861376

RESUMO

BACKGROUND AND PURPOSE: Recent genetic progress has shown many causative/risk genes linked to Parkinson's disease (PD), mainly in patients of European ancestry. The study aimed to investigate the PD-related genes and determine the mutational spectrum of early-onset PD in ethnic Chinese. METHODS: In this study, whole-exome sequencing and/or gene dosage analysis were performed in 704 early-onset PD (EOPD) patients (onset age ≤45 years) and 1866 controls. Twenty-six PD-related genes and 20 other genes linked to neurodegenerative and lysosome diseases were analysed. RESULTS: Eighty-two (11.6%, 82/704) EOPD patients carrying rare pathogenic/likely pathogenic variants in PD-related genes were identified. The mutation frequency in autosomal recessive inheritance EOPD (42.9%, 27/63) was much higher than that in autosomal dominant inheritance EOPD (0.9%, 12/110) or sporadic EOPD (8.1%, 43/531). Bi-allelic mutations in PRKN were the most frequent, accounting for 5.1% of EOPD cases. Three common pathogenic variants, p.A53V in SNCA, p.G284R in PRKN and p.P53Afs*38 in CHCHD2, occur exclusively in Asians. The putative damaging variants from GBA, PRKN, DJ1, PLA2G6 and GCH1 contributed to the collective risk for EOPD. Notably, the protein-truncating variants in CHCHD2 were enriched in EOPD, especially for p.P53Afs*38, which was also found in three patients from an independent cohort of patients with late-onset PD (n = 1300). Functional experiments confirmed that truncated CHCHD2 variants cause loss of function and are linked to mitochondrial dysfunction. CONCLUSIONS: Our study reveals that the genetic spectrum of EOPD in Chinese, which may help develop genetic scanning strategies, provided more evidence supporting CHCHD2 in PD.


Assuntos
Doença de Parkinson , Idade de Início , Povo Asiático/genética , China , Proteínas de Ligação a DNA/genética , Humanos , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Fatores de Transcrição/genética
12.
BMC Med ; 20(1): 209, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35754054

RESUMO

BACKGROUND: The time of survival in patients with amyotrophic lateral sclerosis (ALS) varies greatly, and the genetic factors that contribute to the survival of ALS are not well studied. There is a lack of a comprehensive study to elucidate the role of genetic factors in the survival of ALS. METHODS: The published studies were systematically searched and obtained from PubMed, EMBASE, and the Cochrane Library without any language restrictions from inception to Oct 27, 2021. A network meta-analysis for ALS causative/risk genes and a systematic review and pairwise meta-analysis for other genetic modifiers were conducted. The PROSPERO registration number: CRD42022311646. RESULTS: A total of 29,764 potentially relevant references were identified, and 71 papers were eligible for analysis based on pre-decided criteria, including 35 articles in network meta-analysis for 9 ALS causative/risk genes, 17 articles in pairwise meta-analysis for four genetic modifiers, and 19 articles described in the systematic review. Variants in three genes, including ATXN2 (HR: 3.6), C9orf72 (HR: 1.6), and FUS (HR:1.8), were associated with short survival of ALS, but such association was not identified in SOD1, TARDBP, TBK1, NEK1, UBQLN2, and CCNF. In addition, UNC13A rs12608932 CC genotype and ZNF521B rs2275294 C allele also caused a shorter survival of ALS; however, APOE ε4 allele and KIFAP3 rs1541160 did not be found to have any effect on the survival of ALS. CONCLUSIONS: Our study summarized and contrasted evidence for prognostic genetic factors in ALS and would help to understand ALS pathogenesis and guide clinical trials and drug development.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Genótipo , Humanos , Metanálise em Rede
13.
Front Genet ; 12: 765833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868249

RESUMO

Background: The association between inflammation and neurodegeneration has long been observed in parkinson's disease (PD) and multiple system atrophy (MSA). Previous genome-wide association studies (GWAS) and meta-analyses have identified several risk loci in inflammation-associated genes associated with PD. Objective: To investigate whether polymorphisms in some inflammation-associated genes could modulate the risk of developing PD and MSA in a Southwest Chinese population. Methods: A total of 2,706 Chinese subjects comprising 1340 PD, 483 MSA and 883 healthy controls were recruited in the study. Three polymorphisms (rs2074404 GG/GT/TT, rs17425622 CC/CT/TT, rs34043159 CC/CT/TT) in genes linked to inflammation in all the subjects were genotyped by using the Sequenom iPLEX Assay. Results: The allele G of WNT3 rs2074404 can increase risk on PD (OR: 1.048, 95% CI: 1.182-1.333, p = 0.006), exclusively in the LOPD subgroup (OR: 1.166, 95% CI:1.025-1.327, p = 0.019), but not in EOPD or MSA. And the recessive model analysis also demonstrated an increased PD risk in GG genotype of this locus (OR = 1.331, p = 0.007). However, no significant differences were observed in the genotype distributions and alleles of HLA-DRB5 rs17425622 and IL1R2 rs34043159 between the PD patients and controls, between the MSA patients and controls, or between subgroups of PD or MSA and controls. Conclusion: Our results suggested the allele G of WNT3 rs2074404 have an adverse effect on PD and particularly, on the LOPD subgroup among a Chinese population.

14.
EBioMedicine ; 74: 103732, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34864363

RESUMO

BACKGROUND: The survival time of amyotrophic lateral sclerosis (ALS) is greatly variable and protective or risk effects of the potential survival predictors are controversial. Thus, we aim to undertake a comprehensive meta-analysis of studies investigating non-genetic prognostic and survival factors in patients with ALS. METHODS: A search of relevant literature from PubMed, Embase, Cochrane library and other citations from 1st January 1966 to 1st December 020 was conducted. Random-effects models were conducted to pool the multivariable or adjusted hazard ratios (HR) by Stata MP 16.0. PROSPERO registration number: CRD42021256923. FINDINGS: A total of 5717 reports were identified, with 115 studies meeting pre-designed inclusion criteria involving 55,169 ALS patients. Five dimensions, including demographic, environmental or lifestyle, clinical manifestations, biochemical index, therapeutic factors or comorbidities were investigated. Twenty-five prediction factors, including twenty non-intervenable and five intervenable factors, were associated with ALS survival. Among them, NFL (HR:3.70, 6.80, in serum and CSF, respectively), FTD (HR:2.98), ALSFRS-R change (HR:2.37), respiratory subtype (HR:2.20), executive dysfunction (HR:2.10) and age of onset (HR:1.03) were superior predictors for poor prognosis, but pLMN or pUMN (HR:0.32), baseline ALSFRS-R score (HR:0.95), duration (HR:0.96), diagnostic delay (HR:0.97) were superior predictors for a good prognosis. Our results did not support the involvement of gender, education level, diabetes, hypertension, NIV, gastrostomy, and statins in ALS survival. INTERPRETATION: Our study provided a comprehensive and quantitative index for assessing the prognosis for ALS patients, and the identified non-intervenable or intervenable factors will facilitate the development of treatment strategies for ALS. FUNDING: This study was supported by the National Natural Science Fund of China (Grant No. 81971188), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. 2019HXFH046), and the Science and Technology Bureau Fund of Sichuan Province (No. 2019YFS0216).


Assuntos
Esclerose Lateral Amiotrófica/mortalidade , Feminino , Humanos , Estilo de Vida , Masculino , Prognóstico , Medição de Risco , Análise de Sobrevida , Adulto Jovem
15.
J Parkinsons Dis ; 11(4): 1845-1855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250953

RESUMO

BACKGROUND: Genetic studies have indicated that variants in several lysosomal genes are risk factors for idiopathic Parkinson's disease (PD). However, the role of lysosomal genes in PD in Asian populations is largely unknown. OBJECTIVE: This study aimed to analyze rare variants in lysosomal related genes in Chinese population with early-onset and familial PD. METHODS: In total, 1,136 participants, including 536 and 600 patients with sporadic early-onset PD (SEOPD) and familial PD, respectively, underwent whole-exome sequencing to assess the genetic etiology. Rare variants in PD were investigated in 67 candidate lysosomal related genes (LRGs), including 15 lysosomal function-related genes and 52 lysosomal storage disorder genes. RESULTS: Compared with the autosomal dominant PD (ADPD) or SEOPD cohorts, a much higher proportion of patients with multiple rare damaging variants of LRGs were found in the autosomal recessive PD (ARPD) cohort. At a gene level, rare damaging variants in GBA and MAN2B1 were enriched in PD, but in SCARB2, MCOLN1, LYST, VPS16, and VPS13C were much less in patients. At an allele level, GBA p. Leu483Pro was found to increase the risk of PD. Genotype-phenotype correlation showed no significance in the clinical features among patients carrying a discrepant number of rare variants in LRGs. CONCLUSION: Our study suggests rare variants in LRGs might be more important in the pathogenicity of ARPD cases compared with ADPD or SEOPD. We further confirm rare variants in GBA are involve in PD pathogenecity and other genes associated with PD identified in this study should be supported with more evidence.


Assuntos
Lisossomos , Doença de Parkinson , China , Estudos de Coortes , Estudos de Associação Genética , Humanos , Lisossomos/genética , Doença de Parkinson/genética
16.
Sci Rep ; 10(1): 6777, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303691

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 7(1): 7185, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775264

RESUMO

Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF4 plasma treatment show promise for future industrial biosensing applications.

18.
Ai Zheng ; 21(4): 346-50, 2002 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-12452008

RESUMO

BACKGROUND & OBJECTIVE: Tubeimoside, which is composed of tubeimoside I (79%) and II (21%), was isolated from the tubers of Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), a traditional Chinese medicine, "Tu-Bei-Mu". This study was designed to investigate the anti-tumor mechanism of tubeimoside. METHODS: Growth inhibition was measured by MTT assay. Induction of cell cycle arrest and apoptosis was determined by flow cytometry, fluorescence and electron microscopy, and gel electrophoresis of fragmented DNA. RESULTS: Tubeimoside display strong growth inhibitory effect in a dose- and time-dependant manner against HeLa cells with estimated IC50 values of 20.0, 18.8, and 8.8 mumol/L after 24, 48, and 72 h of treatment with tubeimoside. The flow cytometry profiles revealed that treatment with tubeimoside (5 h; 15, 30, 35 mumol/L) led to a dose-dependant shift from 9.80% up to 21.90%, and 27.00% in percentage of cells with a G2/M-like DNA content. On the other hand, treatment with tubeimoside (12 h, 15, 30, 35 mumol/L) led to a time-dependant shift from 8.20% up to 21.40%, 31.15%, and 34.55%, respectively. Exposure of HeLa cells to 40 mumol/L of tubeimoside induced nuclear shrinkage, chromation condensation and margination against nuclear envelope, subdiploid peak, and DNA fragmentation, characteristic as seen in apoptotic cells. CONCLUSION: Induction of cell cycle arrest and apoptosis may play an important role in the anti-tumor effect of tubeimoside.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Saponinas/farmacologia , Triterpenos/farmacologia , Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA