Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36516081

RESUMO

Introduction: The B3 transcription factor has been identified in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum, among other species. This family of transcription factors regulates seed growth, development, and stress. Cannabis is a valuable crop with numerous applications; however, no B3 transcription factors have been identified in this plant. Materials and Methods: The cannabis B3 gene family was identified and analyzed using bioinformatics analysis tools, such as the NCBI database, plantTFDB website, TBtools, and MEGA software. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were used to confirm its function. Results: The cannabis B3 family contains 65 members spread across 10 chromosomes. The isoelectric point ranged from 10.03 to 4.65, and the molecular weight ranged from 99,542.88 to 14,310.9 Da. Most of the members were found in the nucleus. The upstream promoter region of the gene contains a variety of cis-acting elements related to the stress response. RNA-seq data and qRT-PCR results showed that CsB3 genes were expressed differently in five organs of female Diku plants and in glandular hairs of nine distinct types of female cannabis inflorescences. Collinearity analysis revealed that there were more homologous genes between cannabis and dicotyledons than monocotyledonous plants, which was consistent with the evolutionary relationship. Conclusions: Hormones and external environmental factors might influence CsB3 expression. Furthermore, some genes such as CsB3-02, CsB3-07, CsB3-50, CsB3-62, and CsB3-65 may participate in cannabis growth and development and play a role in secondary metabolite synthesis. This study provides a solid foundation for further research into the gene function of the cannabis B3 family.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 7-12, 2017 01.
Artigo em Chinês | MEDLINE | ID: mdl-30192456

RESUMO

Different shapes of gold nanoparticles (NPs) have different enhancement effect in Surface Enhanced Raman Scattering (SERS). The polyhedral Au NPs have multiple angular structures, which show stronger enhancement effect than Au nanoplatelets. In recent years, the research on synthesis and properties of polyhedral Au NPs has attracted much attention. In this study the enhancement effect of the Au NPs in SERS was observed in Au NPs with the shape of dodecahedron, icosahedron, triangular plate and spherosome. Triangular Au NP films were prepared through a chemical reduction method using sodium borohydride as the reductant. As for synthesizing icosahedral Au NPs, Poly (vinyl pyrrolidone) is used as a capping agent and diethylene glycol is used as a reducing agent. Dodecahedral Au NPs were synthesized using icosahedral Au NPs as seeds. SERS spectra were detected for these three Au NPs as well as the traditional colloidal Au by using 4-mercaptopyridine and 4-mercaptobenzoic as probing molecules. Triangular Au NP films, icosahedral Au NPs and dodecahedral Au NPs were with average diameters of about 130, 100 and 120 nm. UV/Vis spectroscopy indicated that these three Au NPs had typical absorbance bands at 589, 598 and 544 nm. The results show that the Au polyhedron has better enhancement ability than the Triangular NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA