Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 341: 122341, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876727

RESUMO

This study elucidates the intricate interactions between chitin nanocrystals (ChNC) and surfactants of same hydrophobic tail (C12) but different head groups types (anionic, cationic, nonionic): sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and polyoxyethylene(23)lauryl ether (Brij-35). Isothermal Titration Calorimetry (ITC) and rheology are used to study the complex ChNC-surfactant interactions in aqueous media, affected by adsorption, self-assembly and micellization. The ITC results demonstrate that the surfactant head group significantly influences the dynamics and nature of the involved phenomena. Cationic DTAB's reveal minimal interaction with ChNC, non-ionic Brij-25's interact moderately at low concentrations driven by hydrophobic effects while SDS's interacts strongly and show complex interaction patterns that fall across four distinct regimes with SDS addition. We attribute such behavior to initiate through electrostatic attraction and terminate in surfactant micelle formation on ChNC surfaces. ITC also elucidates the impact of ChNC concentration on key parameters including critical aggregation concentration (CAC) and saturation concentration (C2). Dynamic rheological analysis indicates the molecular interactions translate to non-linear variations in the elastic modulus (G') upon SDS addition mirroring that observed in ITC experiments. Such a direct correlation between molecular interactions and macroscopic rheological properties provides insights to aid in the creation of nanocomposites with tailored properties.

2.
Int J Biol Macromol ; 271(Pt 1): 132434, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788879

RESUMO

The aim of this study was to improve the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to XIP in cereal flour. Site saturation mutagenesis was performed using computer-aided redesign. Firstly, based on multiple primary structure alignments, the amino acid residues in the active site architecture were identified, and specific residue T144 in the thumb region of FgXyn11C was selected for site-saturation mutagenesis. After screening, FgXyn11CT144F was selected as the best mutant, as it displayed the highest enzymatic activity and resistance simultaneously compared to other mutants. The specific activity of FgXyn11CT144F was 208.8 U/mg and it exhibited complete resistance to SyXIP-I. Compared with the wild-type, FgXyn11CT144F displayed similar activity and the most resistant against SyXIP-I. The optimal temperature and pH of the wild-type and purified FgXyn11CT144F were similar at pH 5.0 and 30 °C. Our findings provided preliminary insight into how the specific residue at position 144 in the thumb region of FgXyn11C influenced the enzymatic properties and interacted with SyXIP-I. The inhibition sensitivity of FgXyn11C was reduced through directed evolution, leading to creation of the mutant enzyme FgXyn11CT144F. The FgXyn11CT144F resistance to SyXIP-I has potential application and can also provide references for engineering other resistant xylanases of the GHF11.


Assuntos
Endo-1,4-beta-Xilanases , Fusarium , Mutagênese Sítio-Dirigida , Fusarium/enzimologia , Fusarium/efeitos dos fármacos , Fusarium/genética , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Domínio Catalítico , Modelos Moleculares , Concentração de Íons de Hidrogênio , Sequência de Aminoácidos , Temperatura
3.
3 Biotech ; 14(6): 162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803445

RESUMO

In order to search for high specific activity and the resistant xylanases to XIP-I and provide more alternative xylanases for industrial production, a strain of Fusarium graminearum from Triticum aestivum grains infected with filamentous fungus produced xylanases was isolated and identified. Three xylanase genes from Fusarium graminearum Z-1 were cloned and successfully expressed in E. coli and P. pastoris, respectively. The specific activities of Fgxyn1, EFgxyn2 and EFgxyn3 for birchwood xylan were 38.79, 0.85 and 243.83 U/mg in E. coli, and 40.11, 0 and 910.37 U/mg in P. pastoris, respectively. EFgxyn3 and PFgxyn3 had the similar optimum pH at 6.0 and pH stability at 5.0-9.0. However, they had different optimum temperature and thermal stability, with 30 °C for EFgxyn3 and 40 °C for PFgxyn3, and 4-35 °C for EFgxyn3 and 4-40 °C for PFgxyn3, respectively. The substrate spectrum and the kinetic parameters showed that the two xylanases also exhibited the highest xylanase activity and catalytic efficiency (kcat/km) toward birchwood xylan, with 243.83 U/mg and 61.44 mL/mg/s for EFgxyn3 and 910.37 U/mg and 910.37 mL/mg/s for PFgxyn3, respectively. This study provided a novel mesophilic xylanase with high specific activity and catalytic efficiency, thus making it a promising candidate for extensive applications in animal feed and food industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03973-0.

4.
Langmuir ; 40(9): 4881-4892, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386001

RESUMO

Chitin has a unique hierarchical structure, spanning the macro- and nanoscales, and presents chemical characteristics that make it a suitable component of multiphase systems. Herein, we elucidate the colloidal interactions between partially deacetylated chitin nanocrystals (cationic ChNC) and an anionic surfactant, sodium dodecyl sulfate (SDS). We investigate charge neutralization and association (electrophoretic mobility, surface tensiometry, and quartz crystal microgravimetry) and their role in the stabilization of Pickering emulsions. We find SDS adsorption and association with ChNC under distinctive regimes: At low SDS concentration, submonolayer assemblies form on ChNC, driven by the hydrophobic effect and electrostatic interactions. With the increased SDS concentration, bilayers or patchy bilayers form, followed by adsorbed hemimicelles and micelles. We further suggested the role of hydrophobic effects in the observed colloidal transitions and complex conformations. At the highest SDS concentration tested, charge neutralization and SDS/ChNC flocculation take place. Remarkably, at given concentrations, adsorbed SDS endows the chitin nanoparticles with an effective hydrophobicity that opens the opportunity to achieve tailorable Pickering stabilization. Hence, a facile route is proposed by in situ modification by SDS physisorption, which extends the potential of renewable nanoparticles in the formulation of complex fluids, for instance, those relevant to household and healthcare products.

5.
Transl Pediatr ; 12(6): 1139-1147, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37427064

RESUMO

Background: Human breast milk, which comprises numerous bioactive compositions, has been well-demonstrated to be benefit to the infants in both short-term and long-term outcomes. We aim to determine the concentration of transforming growth factor beta 1 (TGF-ß1) and mucin 1 (MUC1) in human breast milk, identify their influencing factors, and explore their association with infantile diseases. Methods: Ninety paired mother-infants were enrolled in this study, and their demographic and clinical information was collected and analyzed. Paired colostrum and mature milk samples were collected from the healthy mothers within 5 days and at about 42 days after delivery, respectively. The concentrations of TGF-ß1 and MUC1 were determined by enzyme-linked immunosorbent assay. Results: The results showed that the concentrations of TGF-ß1 and MUC1 in human breast milk dynamically changed during lactation, and their concentrations were significantly higher in colostrum than in mature milk. Advanced maternal age was associated with a significantly increased TGF-ß1 concentration in colostrum, and caesarean delivery was significantly associated with an increased MUC1 concentration in colostrum. Finally, a high concentration of TGF-ß1 in colostrum was significantly associated with a higher risk of infantile diarrhea within the first 3 months after giving birth, and infantile upper respiratory infection (URI) within the first 6 months after giving birth. Conclusions: To the best of our knowledge, we for the first time showed that a high concentration of TGF-ß1 in human breast milk was significantly associated with an increased risk of infantile diarrhea and URI, which helps to give a better understanding of the relationship between the TGF-ß1 in human breast milk and infantile diseases.

6.
Small ; 19(39): e2300686, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147774

RESUMO

Non-equilibrium multiphase systems are formed by mixing two immiscible nanoparticle dispersions, leading to bicontinuous emulsions that template cryogels with interconnected, tortuous channels. Herein, a renewable, rod-like biocolloid (chitin nanocrystals, ChNC) is used to kinetically arrest bicontinuous morphologies. Specifically, it is found that ChNC stabilizes intra-phase jammed bicontinuous systems at an ultra-low particle concentration (as low as 0.6 wt.%), leading to tailorable morphologies. The synergistic effects of ChNC high aspect ratio, intrinsic stiffness, and interparticle interactions produce hydrogelation and, upon drying, lead to open channels bearing dual characteristic sizes, suitably integrated into robust bicontinuous ultra-lightweight solids. Overall, it demonstrates the successful formation of ChNC-jammed bicontinuous emulsions and a facile emulsion templating route to synthesize chitin cryogels that form unique super-macroporous networks.

7.
Front Immunol ; 13: 821457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345674

RESUMO

Toll like receptors (TLRs) induced response plays a vital role in B-cell development and activation, in which TLR7-mediated and TLR9-mediated response interact together and play antagonistic or cooperative roles at different situations. Previous studies showed that the transcription factor signal transducer and activator of transcription (STAT) 3 was one of the key transcriptional factors (TFs) needed for both TLR7 and TLR9 signaling in B cell, and patients with autosomal dominant hyper IgE syndromes (AD-HIES) due to STAT3 mutations having defective TLRs response in B cells. However, how STAT3 affects its target genes and the downstream signaling pathways in B cell upon TLRs stimulation remains unclarified on a genome-wide level. ChIP-seq and RNA-seq was used in this study to identify the STAT3 targets in response to TLRs stimulation in human B cell. STAT3 ChIP-seq results showed a total of 611 and 2,289 differential STAT3-binding sites in human B cell after TLR7 and TLR9 agonists stimulation, respectively. RNA-seq results showed 1,186 and 1,775 differentially expressed genes after TLR7 and TLR9 activation, respectively. We identified 47 primary STAT3 target genes after TLR7 activation and 189 target genes after TLR9 activation in B cell by integration of STAT3 ChIP-seq and RNA-seq data. Among these STAT3 primary targets, we identified 7 TFs and 18 TFs for TLR7 and TLR9 response, respectively. Besides, we showed that STAT3 might regulate TLR9, but not TLR7 response in B cells through directly regulating integrin signaling pathway, which might further affect the antagonism between TLR7 and TLR9 signaling in B cell. Our study provides insights into the molecular mechanism of human TLRs response in B cell and how it can be regulated, which helps to better understand and modulate TLR-mediated pathogenic immune responses in B cell.


Assuntos
Receptor 7 Toll-Like , Receptor Toll-Like 9 , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , RNA-Seq , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
8.
RSC Adv ; 11(35): 21870-21884, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478784

RESUMO

To reduce the polluted areas caused by the migration of radioactive or toxic matter, a clear understanding of soil matrix stability, especially the lattice, is essential under irradiation conditions like those of ß-ray irradiation. In reality, the matrix of soil or clay is silicate, with talc being one of the most simple species with a similar structure to that matter, exhibiting "2 : 1" stacking and a complete crystal. Therefore, in this work, it was irradiated by an electron beam in air with dose up to 1000 kGy. Then, variations in lattice and the intrinsic microstructural transformation process, especially in terms of defect formation and transformation, were explored. The main results show that irradiation led to talc lattice plane shrinkage and amorphization. Shrinkage and amorphization levels in the Z-axis were more serious than those in the Y-axis. For a 1000 kGy-irradiated sample, the shrinkage level of the (002) lattice plane was close to 2% near 0.2 Å and that of (020) was close to 1.3% near 0.06 Å. Variation in the (002) lattice plane was more obvious than that of (020). The main mechanisms involve the cleavage of tetrahedral Si-O and linkage of tetrahedra and octahedra. Tetrahedral Si-O cleavage was visible, leading to serious amorphization. Nevertheless, lattice plane shrinkage, especially in the Z-axis, was mainly caused by linkage cleavage in this direction. In addition to linkage cleavage, dehydroxylation and H2O volatilization occurred, coupled with H2O radiolysis. Nevertheless, those factors are secondary to lattice variation.

9.
J Cell Biochem ; 119(10): 8271-8281, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923343

RESUMO

Inhibin-α, a member of the transforming growth factor (TGF-ß) superfamily, has been involved in bone turnover during the menopausal transition via endocrine effects, and it was previously reported that inhibins may antagonize the function of BMPs. Certainly, one of the most important functions of BMPs is to induce osteogenic differentiation. BMP9 as one of the most potent BMPs to induce osteogenic differentiation has gotten more and more attentions. Nonetheless, the effects of inhibin-α on osteogenesis remain unknown. Besides, mesenchymal stem cells (MSCs) with the ability to differentiate into multiple mesenchymal lineages, including osteoblasts, adipocyte, chondrocytes, and myoblasts in vitro, have become the promising seed cells for bone tissue engineering. Here, we investigated the role of inhibin-α on BMP9-induced osteogenic differentiation in MSCs and tried to discover the mechanism underlying this process. We found inhibin-α apparently reduced the classical osteogenic markers and the ectopic bone formation induced by BMP9. In addition, the ratio of OPG to RANKL is declined also in the presence of inhibin-α. For mechanism, we found that exogenous expression of inhibin-α inhibits BMP9-induced osteogenic differentiation through blocking BMP/Smad signal transduction and activating NF-κB signal which is repressed by BMP9. Thus, our findings indicated that inhibin-α has a negative effect on BMP9-induced osteogenic differentiation in MSCs, which may provide a novel insight into the regulation of skeletal development and new strategy for bone tissue engineering.


Assuntos
Fatores de Diferenciação de Crescimento/genética , Inibinas/genética , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/genética , Osteogênese/genética , Proteína Smad6/genética , Proteína Smad7/genética , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Inibinas/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Transdução de Sinais , Proteína Smad6/metabolismo , Proteína Smad7/metabolismo , Transfecção
10.
Opt Lett ; 42(16): 3064-3067, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809873

RESUMO

A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

11.
J Cell Biochem ; 118(7): 1792-1802, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27996168

RESUMO

Postmenopausal osteoporosis (PMOP)-related fractures usually result in morbidity and mortality in aging women, so it remains a global public health concern, and new effective safe treatments are urgently needed recently. Efficient osteogenesis from mesenchymal stem cells (MSCs) would have the clinical application potential in treating multiple osteal disorders. Follicle-stimulating hormone (FSH), a pituitary glycoprotein hormone highly associated with menopausal bone turnover, whose peculiar part of receptor binding is follicle-stimulating hormone ß-subunit (FSHß). Bone morphogenetic protein 9 (BMP9), a potent osteogenic factor, can up-regulate FSHß in mouse embryonic fibroblasts (MEFs). However, it is unclear, whether extrapituitary FSHß affects BMP9-induced osteogenesis in MEFs. In this study, we investigated the role of FSHß in BMP9-induced osteogenesis in MEFs. We found that exogenous expression of FSHß significantly increased BMP9-induced alkaline phosphatase activity (ALP), the expression of osteogenic transcriptional factors, Runx2 and Osx, and the established late osteogenic markers, osteopontin (OPN) and osteocalcin (OCN), so does the ectopic bone formation. Mechanistically, FSHß dramatically enhanced BMP9-induced BMP/Smad signal transduction, presenting the augment phosphorylation of Smad1/5/8, whereas treatment with anti-FSHß antibodies suppressed these effects. An adenylate cyclase inhibitor obviously suppressed ALP and BMP/Smad signal transduction induced by BMP9 or the combination of BMP9 and FSHß in MEFs. Collectively, our findings suggested that FSHß may promote BMP9-induced activation of BMP/Smad signaling through a FSH/FSH receptor (FSHR)/cAMP dependent pathway in MEFs partly. J. Cell. Biochem. 118: 1792-1802, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/farmacologia , Fatores de Diferenciação de Crescimento/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Células HEK293 , Humanos , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Receptores do FSH/genética , Receptores do FSH/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Opt Express ; 24(25): 28270-28278, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958538

RESUMO

We proposed an approach for creating three-dimensional (3D) multifocal perfect vortices arrays by using a high numerical aperture objective. The position, orbital angular momentum states, number and diameter of the perfect vortices can be freely modulated by a special designed hybrid phase plate (HPP). HPP could be calculated by 3D phase shifting expression which is derived from Fourier transform theory of the Debye diffraction integral. Furthermore, we developed a novel pixel checkerboard method for adding phase information into the HPP. The segmentation of HPP is related to vortex quality and intensity uniformity. This method could fully use each pixel to modulate the light, since the spatial light modulator has to be used. Small size lattices could generate high quality and uniform intensity vortex arrays in tight focusing region, which may have potential applications in coupling, optical coding and decoding.

13.
ACS Appl Mater Interfaces ; 8(13): 8358-66, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26998551

RESUMO

The outstanding progress of nanoparticles-based delivery systems capable of releasing hypoglycemic drugs in response to glucose has dramatically changed the outlook of diabetes management. However, the developed glucose-responsive systems have not offered real-time monitoring capabilities for accurate quantifying hypoglycemic drugs released. In this study, we present a multifunctional delivery system that integrates both delivery and monitoring issues using glucose-triggered competitive binding scheme on alizarin complexone (ALC) functionalized mesoporous silica nanoparticles (MSN). In this system, ALC is modified on the surface of MSN as the signal reporter. Gluconated insulin (G-Ins) is then introduced onto MSN-ALC via benzene-1,4-diboronic acid (BA) mediated esterification reaction, where G-Ins not only blocks drugs inside the mesopores but also works as a hypoglycemic drug. In the absence of glucose, the sandwich-type boronate ester structure formed by BA binding to the diols of ALC and G-Ins remains intact, resulting in an fluorescence emission peak at 570 nm and blockage of pores. Following a competitive binding, the presence of glucose cause the dissociation of boronate ester between ALC and BA, which lead to the pores opening and disappearance of fluorescence. As proof of concept, rosiglitazone maleate (RSM), an insulin-sensitizing agent, was doped into the MSN to form a multifunctional MSN (RSM@MSN-ALC-BA-Ins), integrating with double-drugs loading, glucose-responsive performance, and real-time monitoring capability. It has been demonstrated that the glucose-responsive release behaviors of insulin and RSM in buffer or in human serum can be quantified in real-time through evaluating the changes of fluorescence signal. We believe that this developed multifunctional system can shed light on the invention of a new generation of smart nanoformulations for optical diagnosis, individualized treatment, and noninvasive monitoring of diabetes management.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Tiazolidinedionas/administração & dosagem , Antraquinonas/química , Diabetes Mellitus/sangue , Fluorescência , Glucose/metabolismo , Células HeLa , Humanos , Insulina/sangue , Nanopartículas/administração & dosagem , Rosiglitazona , Dióxido de Silício/química , Tiazolidinedionas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA