RESUMO
Cancer metastasis is the major cause of cancer-related deaths and accounts for poor therapeutic outcomes. A metastatic cascade is a series of complicated biological processes. N6-methyladenosine (m6A) is the most abundant and conserved epitranscriptomic modification in eukaryotic cells, which has great impacts on RNA production and metabolism, including RNA splicing, processing, degradation and translation. Accumulating evidence demonstrates that m6A plays a critical role in regulating cancer metastasis. However, there is a lack of studies that review the recent advances of m6A in cancer metastasis. Here, we systematically retrieved the functions and mechanisms of how the m6A axis regulates metastasis, and especially summarized the organ-specific liver, lung and brain metastasis mediated by m6A in various cancers. Moreover, we discussed the potential application of m6A modification in cancer diagnosis and therapy, as well as the present limitations and future perspectives of m6A in cancer metastasis. This review provides a comprehensive knowledge on the m6A-mediated regulation of gene expression, which is helpful to extensively understand the complexity of cancer metastasis from a new epitranscriptomic point of view and shed light on the developing novel strategies to anti-metastasis based on m6A alteration.
RESUMO
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
RESUMO
Lenvatinib is an inhibitor of multiple receptor tyrosine kinases that was recently authorized for first-line treatment of hepatocellular carcinoma (HCC). However, the clinical benefits derived from lenvatinib are limited, highlighting the urgent need to understand mechanisms of resistance. We report here that HCC cells develop resistance to lenvatinib by activating EGFR and stimulating the EGFR-STAT3-ABCB1 axis. Lenvatinib resistance was accompanied by aberrant cholesterol metabolism and lipid raft activation. ABCB1 was activated by EGFR in a lipid raft-dependent manner, which significantly enhanced the exocytosis of lenvatinib to mediate resistance. Furthermore, clinical specimens of HCC showed a correlation between the activation of the EGFR-STAT3-ABCB1 pathway and lenvatinib response. Erlotinib, an EGFR inhibitor that has also been shown to inhibit ABCB1, suppressed lenvatinib exocytosis, and combined treatment with lenvatinib and erlotinib demonstrated a significant synergistic effect on HCC both in vitro and in vivo. Taken together, these findings characterize a mechanism of resistance to a first-line treatment for HCC and offer a practical means to circumvent resistance and treat the disease. SIGNIFICANCE: HCC cells acquire resistance to lenvatinib by activating the EGFR-STAT3-ABCB1 pathway, identifying combined treatment with erlotinib as a strategy to overcome acquired resistance and improve the clinical benefit of lenvatinib.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Colesterol/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Neoplasias Hepáticas/patologia , Compostos de Fenilureia , Quinolinas , Fator de Transcrição STAT3/metabolismo , TirosinaRESUMO
BACKGROUND: Oncolytic virotherapy has become an important branch of cancer immunotherapy. This study investigated the efficacy of an oncolytic adenovirus (OAV), OncoViron, with synergistic mechanisms in the treatment of multiple solid tumors. METHODS: An OAV, OncoViron, was constructed and investigated by cytological experiments and implanted tumor models of multiple solid tumor cell lines to certify its anticancer efficacy, the synergistic effects of viral oncolysis and transgene anticancer activity of OncoViron, as well as oncolytic virotherapy combined with immunotherapy, were also verified. RESULTS: The selective replication of OncoViron mediated high expression of anticancer factors, specifically targeted a variety of solid tumors and significantly inhibited cancer cell proliferation. On a variety of implanted solid tumor models in immunodeficient mice, immunocompetent mice, and humanized mice, OncoViron showed great anticancer effects on its own and in combination with programmed death 1 (PD-1) antibody and chimeric antigen receptor (CAR) T cells. Pathological examination, single-cell sequencing, and spatial transcriptome analysis of animal implanted tumor specimens confirmed that OncoViron significantly altered the gene expression profile of infected cancer cells, not only recruiting a large number of lymphocytes, natural killer cells, and mononuclear macrophages into tumor microenvironment (TME) and activated immune cells, especially T cells but also inducing M1 polarization of macrophages and promoting the release of more immune cytokines, thereby remodeling the TME for coordinating PD-1 antibody or CAR T therapy. CONCLUSIONS: The chimeric OncoViron is a novel broad-spectrum anticancer product with multiple mechanisms of synergistic and potentiated immunotherapy, creating a good opportunity for combined immunotherapy against solid tumors.
Assuntos
Adenoviridae , Terapia Viral Oncolítica , Adenoviridae/genética , Animais , Humanos , Imunoterapia Adotiva , Camundongos , Receptor de Morte Celular Programada 1/genética , SorogrupoRESUMO
AIM: Cancer-associated fibroblasts (CAFs) expressing podoplanin (PDPN) harbor a fibrous tumor microenvironment that promotes cancer progression in lung adenocarcinoma. In this study, we investigated whether tumor-promoting PDPN+ CAFs contribute to the immunosuppressive microenvironment in lung squamous cell carcinoma (SqCC). M&M: The gene expression profiles of immunosuppressive cytokines were compared using The Cancer Genome Atlas (TCGA) microarray lung SqCC data (nâ¯=â¯484) between a PDPN-high group and a PDPN-low group. Further, using patient-derived CAFs from surgically resected lung SqCC, the PDPN+ fraction was sorted and gene and protein expressions were analyzed. Finally, immunohistochemical staining was conducted on 131 surgically resected lung SqCC; CD8+ and FOXP3+ tumor infiltrating lymphocytes (TILs), and CD204+ tumor-associated macrophages (TAMs) were evaluated in cases with PDPN+ and PDPN- CAFs. RESULTS: Analysis of TCGA database revealed that the PDPN-high group exhibited significantly higher expression of interleukin (IL)-1A, IL-1B, IL-6, IL-10, monocyte chemoattractant protein-1 (CCL2), colony stimulating factor 1 (CSF1), fibroblast growth factor 2 (FGF2), galectin 1 (LGALS1), platelet derived growth factor subunit A (PDGFA), PDGFB, and transforming growth factor-ß1 (TGFB1) than those in the PDPN-low group. Among them, it was found that TGFB1 expression was higher in patient-derived PDPN+ CAFs. Immunohistochemical analyses revealed that more CD204+ TAMs infiltrated the tumor tissues in cases with PDPN+ CAFs than in cases with PDPN- CAFs (Pâ¯<⯠0.03), while CD8+ and FOXP3+ TILs did not. Furthermore, in the same tumor, CD204+ TAMs infiltrated more in PDPN+ CAF-rich areas (Pâ¯=⯠0.005). CONCLUSION: PDPN+ CAFs showed higher expression of TGFB1 and were associated with CD204+ TAM infiltration in stage-I lung SqCC, suggesting that PDPN+ CAFs were associated with the immunosuppressive tumor microenvironment.
Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Fibroblastos , Humanos , Pulmão , Neoplasias Pulmonares/genética , Glicoproteínas de Membrana/genética , Microambiente TumoralRESUMO
INTRODUCTION: CD200R has been reported to be the receptor for the immune checkpoint molecule CD200 and can transduce immune-suppressive signals. In this study, we mainly focused on the expression level of CD200R in T cells in pulmonary artery (PA) blood and non-small-cell lung cancer (NSCLC) tumor tissue. METHODS: Immune cells were isolated from dissected tumor samples and PA blood of NSCLC patients and analyzed with multiparameter flow cytometry. The co-expression of CD200R with other immune checkpoints, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), was also investigated. RESULTS: CD200R expression was observed on the surface of approximately 75% of T cells among tumor-infiltrating leukocytes (TILs). Compared to T cells extracted from TILs, only 55% of T cells extracted from PA blood exhibited CD200R expression. Moreover, with higher expression of CD200R, the expression of other immune checkpoints, including PD-1, CTLA-4, and TIM-3, was also increased in tumor-infiltrating T cells compared to T cells in PA blood. CONCLUSIONS: Our results showed that those tumors were dominated by T cells expressing CD200R together with other checkpoints, which suggests a phenotypic change after T cell infiltration into the tumor, such as T cell exhaustion.
Assuntos
Antígeno CTLA-4/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Neoplasias Pulmonares/genética , Receptores de Orexina/genética , Receptor de Morte Celular Programada 1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral , Regulação para CimaRESUMO
Collagen type I (Col I) is one of the major extracellular matrix proteins in the cancer tissue. Previously, we have reported that Col I induces epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance by mTOR activation through Akt and ERK1/2 independent pathway. In this study, we aimed to elucidate the molecular mechanism of Col I induced EGFR-TKI resistance. First, we demonstrated the uptake of fluorescently labeled Col I by EGFR-mutated lung cancer cell line PC-9 cells using confocal microscopy and flow cytometry. Metabolome analysis revealed that the metabolic profiles of PC-9 cells was influenced by Col I treatment. Uptake of Col I into PC-9 cells was not inhibited by MMP inhibitor, GM6001, and endocytosis inhibitors, Pitstop2 and Dyngo4a; however, macropinocytosis inhibitor EIPA prevented its uptake. Moreover, the combination of EIPA and EGFR-TKI abrogated Col I-induced EGFR-TKI resistance in PC-9 cells. Inhibition of Rac1, which is essential for micropinocytosis, also decreased the uptake of Col I in PC-9 cells and restored their sensitivity to EGFR-TKI. Thus, EGFR mutated lung cancer cells could develop EGFR-TKI resistance by Col I uptake by macropinocytosis route.
Assuntos
Antineoplásicos/farmacologia , Colágeno Tipo I/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pinocitose , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolômica , Pinocitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
In diffuse large B-cell lymphoma (DLBCL), many oncogenic microRNAs (OncomiRs) are highly expressed to promote disease development and progression by inhibiting the expression and function of certain tumor suppressor genes, and these OncomiRs comprise a promising new class of molecular targets for the treatment of DLBCL. However, most current therapeutic studies have focused on a single miRNA, with limited treatment outcomes. In this study, we generated tandem sequences of 10 copies of the complementary binding sequences to 13 OncomiRs and synthesized an interfering long non-coding RNA (i-lncRNA). The highly-expressed i-lncRNA in DLBCL cells would compete with the corresponding mRNAs of OncomiR target genes for binding OncomiRs, thereby effectively consuming a large amount of OncomiRs and protecting many tumor suppressor genes. The in vitro experiments confirmed that the i-lncRNA expression significantly inhibited cell proliferation, induced cell cycle arrest and apoptosis in DLBCL cell lines, mainly through upregulating the expression of PTEN, p27kip1, TIMP3, RECK and downregulating the expression of p38/MAPK, survivin, CDK4, c-myc. In the established SUDHL-4 xenografts in nude mice, the treatment strategy involving adenovirus-mediated i-lncRNA expression significantly inhibited the growth of DLBCL xenografts. Therefore, this treatment would specifically target the carcinogenic effects of many OncomiRs that are usually expressed in DLBCL and not in normal cells, such a strategy could improve anti-tumor efficacy and safety and may be a good prospect for clinical applications.
Assuntos
Linfoma Difuso de Grandes Células B/terapia , MicroRNAs/antagonistas & inibidores , RNA Longo não Codificante/genética , Animais , Apoptose , Carcinogênese/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Oncogenes , Ligação ProteicaRESUMO
Endogenous miRNAs, especially oncogenic miRNAs (OncomiR), have been molecular targets for cancer therapy. We generated an artificially designed interfering long noncoding RNA (lncRNAi), which contains the sequences that can complementarily bind to multiple OncomiRs and is expressed by cancer-selectively replicating adenovirus. The adenovirus-expressed lncRNAi with high levels in hepatocellular carcinoma (HCC) cells competes with OncomiR target genes to bind to and consume OncomiRs, thereby achieving the targeted anti-HCC efficacy. With the targeting replication of adenovirus in HCC cells, lncRNAi was highly expressed and resulted in decreased abilities of proliferation, migration, and invasion, induced cell-cycle changes and apoptosis, and markedly changed the cellular mRNA and miRNA expression profiles in HCC cells. The optimal antitumor effect was also demonstrated on HCC cell line xenograft models and HCC patient-derived xenograft (PDX) tumor models in nude mice. This strategy has established a technology platform with a reliable therapeutic effect for HCC therapy. Mol Cancer Ther; 15(7); 1436-51. ©2016 AACR.
Assuntos
Adenoviridae/genética , Carcinoma Hepatocelular/genética , Vetores Genéticos/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Vírus Oncolíticos/genética , Interferência de RNA , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Genes Reporter , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Terapia Viral Oncolítica , RNA Mensageiro/genética , Transcriptoma , Carga Tumoral/genética , Replicação Viral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The CCND1 gene is overexpressed in esophageal cancer and accelerates cell cycle progression. However, the mechanism whereby the upstream genes or factors directly regulate CCND1 expression remains unknown. By analyzing the 5'-UTR region of the CCND1 gene, we found that this region contains an octamer motif (ATTTTGCAT), which suggests that the expression of CCND1 might be directly associated with octamer-binding transcription factor 4 (OCT4). In this study, the wild-type and the octamer motif-mutanted CCND1 promoters were cloned, and their corresponding luciferase reporter vectors were then constructed to study the molecular mechanism by which OCT4 regulates the expression of CCND1 and influences the biological behaviors of esophageal cancer cells. The results indicated that suppressing the expression of CCND1 and OCT4 in esophageal cancer cells reduced cell proliferative and invasive abilities, induced cell cycle G1-phase arrest, and slowed the growth of xenografts in nude mice. Suppression of OCT4 expression significantly decreased the wild-type CCND1 promoter activity and down-regulated the expression of CCND1, but did not affect the activity of the mutant promoter. Whereas, suppression of CCND1 did not affect OCT4 expression, suggesting that OCT4 regulates CCND1 expression by activating the CCND1 promoter and subsequently promoting cell cycle progression. The results revealed and confirmed that OCT4 is the upstream factor that directly binds to the CCND1 promoter to regulate CCND1 expression, then to promote cell cycle progression and accelerate the proliferation and invasion of esophageal cancer cells. This finding may significantly contribute to elucidating the regulatory mechanism involved in the cell cycle progression of esophageal cancer cells and may aid in screening potential gene targets for the biological therapy of esophageal cancer.
Assuntos
Carcinoma/metabolismo , Ciclo Celular , Ciclina D1/metabolismo , Neoplasias Esofágicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Invasividade Neoplásica , Transplante de Neoplasias , Regiões Promotoras GenéticasRESUMO
The human sulfatase 1 (hSulf-1) gene encodes an endosulfatase that functions to inhibit the heparin-binding growth factor signaling, including the basic fibroblast growth factor (bFGF)-mediated pathway, by desulfating the cell surface heparan sulfate proteoglycans (HSPGs). bFGF could stimulate cell cycle progression and inhibit cell apoptosis, this biological effect can be reversed by hSulf-1. However, molecular mechanisms have not been fully reported. In the current study, by reactivation of hSulf-1 expression and function in the hSulf-1-negative hepatocellular carcinoma (HCC) cell lines and HCC xenograft tumors, we found that hSulf-1 blocked the bFGF effect on the promotion of cell cycle and inhibition of apoptosis. The bFGF-stimulated activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways was suppressed by hSulf-1, which led to a decreased expression of the target genes Cyclin D1 and Survivin, then finally induced cell cycle arrest and apoptosis in HCC cells. Our data suggested that hSulf-1 may be a suitable target for cancer therapy.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sulfotransferases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Sulfotransferases/genética , Survivina , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genéticaRESUMO
Cancer metastasis is closely related to tumor cell microenvironments. Cancer cells and stromal cells interact with one another through extracellular matrix (ECM) and jointly participate in establishing the microenvironments. However, many questions remain to be addressed, in particular, a crucial question is which messengers mediate the mutual interaction and regulation between cancer cells and stromal cells. MicroRNAs (miRNAs), as oncogenic and oncosuppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells and stromal cells, which may play an important role in cancer metastasis. Many miRNAs associated with cancer metastasis have been identified. The molecules of miRNAs are small and relatively easy to be secreted into extracellular microenvironments and devoured by nearby cells. As the regulatory messengers between cells, the secreted miRNAs function to regulate cancer cell proliferation, migration, intercellular communication and stromal modification, thereby helping cancer cells to establish their microenvironments for metastasis. In conclusion, miRNAs are small molecules, but they play a powerful role in regulating cancer metastatic ability by construction and modification of microenvironments.