Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 15(1): 68, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424368

RESUMO

PURPOSE: To develop and evaluate machine learning models based on MRI to predict clinically significant prostate cancer (csPCa) and International Society of Urological Pathology (ISUP) grade group as well as explore the potential value of radiomics models for improving the performance of radiologists for Prostate Imaging Reporting and Data System (PI-RADS) assessment. MATERIAL AND METHODS: A total of 1616 patients from 4 tertiary care medical centers were retrospectively enrolled. PI-RADS assessments were performed by junior, senior, and expert-level radiologists. The radiomics models for predicting csPCa were built using 4 machine-learning algorithms. The PI-RADS were adjusted by the radiomics model. The relationship between the Rad-score and ISUP was evaluated by Spearman analysis. RESULTS: The radiomics models made using the random forest algorithm yielded areas under the receiver operating characteristic curves (AUCs) of 0.874, 0.876, and 0.893 in an internal testing cohort and external testing cohorts, respectively. The AUC of the adjusted_PI-RADS was improved, and the specificity was improved at a slight sacrifice of sensitivity. The participant-level correlation showed that the Rad-score was positively correlated with ISUP in all testing cohorts (r > 0.600 and p < 0.0001). CONCLUSIONS: This radiomics model resulted as a powerful, non-invasive auxiliary tool for accurately predicting prostate cancer aggressiveness. The radiomics model could reduce unnecessary biopsies and help improve the diagnostic performance of radiologists' PI-RADS. Yet, prospective studies are still needed to validate the radiomics models further. CRITICAL RELEVANCE STATEMENT: The radiomics model with MRI may help to accurately screen out clinically significant prostate cancer, thereby assisting physicians in making individualized treatment plans. KEY POINTS: • The diagnostic performance of the radiomics model using the Random Forest algorithm is comparable to the Prostate Imaging Reporting and Data System (PI-RADS) obtained by radiologists. • The performance of the adjusted Prostate Imaging Reporting and Data System (PI-RADS) was improved, which implied that the radiomics model could be a potential radiological assessment tool. • The radiomics model lowered the percentage of equivocal cases. Moreover, the Rad-scores can be used to characterize prostate cancer aggressiveness.

2.
J Magn Reson Imaging ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602942

RESUMO

BACKGROUND: Accurately detecting adverse pathology (AP) presence in prostate cancer patients is important for personalized clinical decision-making. Radiologists' assessment based on clinical characteristics showed poor performance for detecting AP presence. PURPOSE: To develop deep learning models for detecting AP presence, and to compare the performance of these models with those of a clinical model (CM) and radiologists' interpretation (RI). STUDY TYPE: Retrospective. POPULATION: Totally, 616 men from six institutions who underwent radical prostatectomy, were divided into a training cohort (508 patients from five institutions) and an external validation cohort (108 patients from one institution). FIELD STRENGTH/SEQUENCES: T2-weighted imaging with a turbo spin echo sequence and diffusion-weighted imaging with a single-shot echo plane-imaging sequence at 3.0 T. ASSESSMENT: The reference standard for AP was histopathological extracapsular extension, seminal vesicle invasion, or positive surgical margins. A deep learning model based on the Swin-Transformer network (TransNet) was developed for detecting AP. An integrated model was also developed, which combined TransNet signature with clinical characteristics (TransCL). The clinical characteristics included biopsy Gleason grade group, Prostate Imaging Reporting and Data System scores, prostate-specific antigen, ADC value, and the lesion maximum cross-sectional diameter. STATISTICAL TESTS: Model and radiologists' performance were assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The Delong test was used to evaluate difference in AUC. P < 0.05 was considered significant. RESULTS: The AUC of TransCL for detecting AP presence was 0.813 (95% CI, 0.726-0.882), which was higher than that of TransNet (0.791 [95% CI, 0.702-0.863], P = 0.429), and significantly higher than those of CM (0.749 [95% CI, 0.656-0.827]) and RI (0.664 [95% CI, 0.566-0.752]). DATA CONCLUSION: TransNet and TransCL have potential to aid in detecting the presence of AP and some single adverse pathologic features. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 4.

3.
Eur J Nucl Med Mol Imaging ; 50(3): 727-741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409317

RESUMO

PURPOSE: This study aimed to develop deep learning (DL) models based on multicentre biparametric magnetic resonance imaging (bpMRI) for the diagnosis of clinically significant prostate cancer (csPCa) and compare the performance of these models with that of the Prostate Imaging and Reporting and Data System (PI-RADS) assessment by expert radiologists based on multiparametric MRI (mpMRI). METHODS: We included 1861 consecutive male patients who underwent radical prostatectomy or biopsy at seven hospitals with mpMRI. These patients were divided into the training (1216 patients in three hospitals) and external validation cohorts (645 patients in four hospitals). PI-RADS assessment was performed by expert radiologists. We developed DL models for the classification between benign and malignant lesions (DL-BM) and that between csPCa and non-csPCa (DL-CS). An integrated model combining PI-RADS and the DL-CS model, abbreviated as PIDL-CS, was developed. The performances of the DL models and PIDL-CS were compared with that of PI-RADS. RESULTS: In each external validation cohort, the area under the receiver operating characteristic curve (AUC) values of the DL-BM and DL-CS models were not significantly different from that of PI-RADS (P > 0.05), whereas the AUC of PIDL-CS was superior to that of PI-RADS (P < 0.05), except for one external validation cohort (P > 0.05). The specificity of PIDL-CS for the detection of csPCa was much higher than that of PI-RADS (P < 0.05). CONCLUSION: Our proposed DL models can be a potential non-invasive auxiliary tool for predicting csPCa. Furthermore, PIDL-CS greatly increased the specificity of csPCa detection compared with PI-RADS assessment by expert radiologists, greatly reducing unnecessary biopsies and helping radiologists achieve a precise diagnosis of csPCa.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Próstata/patologia
4.
Chem Commun (Camb) ; 51(82): 15118-21, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26323249

RESUMO

A near infrared probe for sensitive colorimetric and fluorimetric detection of nerve agent mimics, DCP and DCNP, was reported based on the activation of a carboxylic acid group by the mimics to conduct an intramolecular amidation reaction in the heptamethine chromophore, where its absorption or excitation maximum wavelength could be greatly red-shifted by attenuating the electron-donating ability of the amine group in the bridgehead site of heptamethine cyanine.


Assuntos
Corantes Fluorescentes/química , Indóis/química , Agentes Neurotóxicos/análise , Organofosfonatos/análise , Compostos Organofosforados/análise , Acilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA