Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 276: 126301, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38781915

RESUMO

Large-area two-dimensional (2D) materials possess significant potential in the development of next generation semiconductor due to their unique physicochemical properties. Confocal Raman spectroscopy (CRM), a typical 2D material characterization method, has a limited effective measurement area owing to the restricted focus depth of the system and the less-than-ideal level of the substrate. We propose fast adaptive focusing confocal Raman microscopy (FAFCRM) to realize real-time focusing detection for large-area 2D materials. By observing spot changes on the charge coupled device (CCD) caused by placing an aperture in front of the CCD, the methodology gives a focusing resolution up to 100 nm per 60 µm without axial scanning. A graphene was measured over 25.6 mm × 25.6 mm area on focus through all the scanning. The research results provide new perspectives for non-destructive characterization of 2D materials at the inch level.

2.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512628

RESUMO

With the development of space laser communication and the planned deployment of satellite Internet constellations, there is a growing demand for microminiature laser communication terminals. To meet the requirements of size, weight and power (SWaP), miniaturized terminals require smaller drive components to complete on-orbit scanning and capture, which must be fast and efficient to enable satellite laser communication networks. These miniaturized laser communication terminals are highly susceptible to the impact of the initial pointing accuracy of the laser beam and microvibrations of the satellite platform. Therefore, this paper proposes a laser scanning-capture model based on a Micro-electromechanical Systems (MEMS) micromirror that can provide a fast, large-scale scanning analysis. A scanning overlap factor is introduced to improve the capture probability under the influence of microvibrations. Finally, experimental analysis was carried out to verify the effectiveness of the proposed model, which can establish a theoretical basis for future ultra-long-distance microspace laser communication.

3.
Light Sci Appl ; 12(1): 129, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248287

RESUMO

Raman and Brillouin scattering are sensitive approaches to detect chemical composition and mechanical elasticity pathology of cells in cancer development and their medical treatment researches. The application is, however, suffering from the lack of ability to synchronously acquire the scattering signals following three-dimensional (3D) cell morphology with reasonable spatial resolution and signal-to-noise ratio. Herein, we propose a divided-aperture laser differential confocal 3D Geometry-Raman-Brillouin microscopic detection technology, by which reflection, Raman, and Brillouin scattering signals are simultaneously in situ collected in real time with an axial focusing accuracy up to 1 nm, in the height range of 200 µm. The divided aperture improves the anti-noise capability of the system, and the noise influence depth of Raman detection reduces by 35.4%, and the Brillouin extinction ratio increases by 22 dB. A high-precision multichannel microspectroscopic system containing these functions is developed, which is utilized to study gastric cancer tissue. As a result, a 25% reduction of collagen concentration, 42% increase of DNA substances, 17% and 9% decrease in viscosity and elasticity are finely resolved from the 3D mappings. These findings indicate that our system can be a powerful tool to study cancer development new therapies at the sub-cell level.

4.
Opt Express ; 30(23): 41447-41458, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366623

RESUMO

Confocal Raman microscopy (CRM) has found applications in many fields as a consequence of being able to measure molecular fingerprints and characterize samples without the need to employ labelling methods. However, limited spatial resolution has limited its application when identification of sub-micron features in materials is important. Here, we propose a differential correlation-confocal Raman microscopy (DCCRM) method to address this. This new method is based on the correlation product method of Raman scattering intensities acquired when the confocal Raman pinhole is placed at different (defocused) positions either side of the focal plane of the Raman collection lens. By using this correlation product, a significant enhancement in the spatial resolution of Raman mapping can be obtained. Compared with conventional CRM, these are 23.1% and 33.1% in the lateral and axial directions, respectively. We illustrate these improvements using in situ topographic imaging and Raman mapping of graphene, carbon nanotube, and silicon carbide samples. This work can potentially contribute to a better understanding of complex nanostructures in non-real time spectroscopic imaging fields.

5.
Data Brief ; 36: 107132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095381

RESUMO

The dataset describes the mechanism of suppressing the background noise of the divided-aperture differential confocal Raman microscopy system and the range of tilting angles that the system can handle. On the basis of the confocal microscopy (CM), the divided-aperture confocal microscopy divided the pupil plane of the objective lens into the illumination pupil and collection pupil. Compared with the CM, the divided-aperture confocal microscopy only changes the pupil parameters, according to the partially coherent imaging theory, we simulate and analyze the axial response curves of the divided-aperture confocal system and the traditional confocal system. We also simulated the differential confocal response curve at different tilting angles and get the data for the applicability of the differential confocal response curve to see if there is a single zero-crossing point or a good linearity near the zero-crossing point. The goodness-of-fit (GOF) is used to evaluate the accuracy of linear fitting, and can be used as a simple measure method of linearity. And the closer the GOF value is to 1, the higher fitting accuracy is. Through simulation analysis, we can have a better understanding of the advances of divided-aperture differential confocal Raman microscopy.

6.
Opt Express ; 28(21): 31821-31831, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115147

RESUMO

Confocal Brillouin microscopy (CBM) is a novel and powerful technique for providing non-contact and direct readout of the micro-mechanical properties of a material, and thus used in a broad range of applications, including biological tissue detection, cell imaging, and material characterization in manufacturing. However, conventional CBMs have not enabled high precision mechanical mapping owing to the limited depth of focus and are subject to system drift during long-term measurements. In this paper, a divided-aperture confocal Brillouin microscopy (DCBM) is proposed to improve the axial focusing capability, stability, and extinction ratio of CBM. We exploit high-sensitivity divided-aperture confocal technology to achieve an unprecedented 100-fold enhancement in the axial focusing sensitivity of the existing CBMs, reaching 5 nm, and to enhance system stability. In addition, the dark-field setup improves the extinction ratio by 20 dB. To the best of our knowledge, our method achieves the first in situ topographic imaging and mechanical mapping of the sample and provides a new approach for Brillouin scattering applications in material characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA