Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Clin Transl Med ; 14(5): e1652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741204

RESUMO

BACKGROUND: Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS: A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS: Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS: HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.


Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Detecção Precoce de Câncer , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Feminino , Masculino , Metilação de DNA/genética , Pessoa de Meia-Idade , Prognóstico , Detecção Precoce de Câncer/métodos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Adulto
2.
ChemMedChem ; : e202400120, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696276

RESUMO

Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.

3.
Adv Drug Deliv Rev ; : 115330, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735627

RESUMO

Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.

4.
J Med Chem ; 67(8): 6810-6821, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38613772

RESUMO

Anti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, Ir-UA, that boosts PD-L1 expression and converts "cold tumors" to "hot". Subsequently, we administered Ir-UA combined with anti-PD-L1 in mice, which effectively inhibited tumor growth and promoted CD4+ and CD8+ T cell infiltration. To our knowledge, Ir-UA is the first iridium-based complex to stimulate the expression of PD-L1 by explicitly regulating its transcription factors, which not only provides a promising platform for immune checkpoint blockade but, more importantly, provides an effective treatment strategy for patients with low PD-L1 expression.


Assuntos
Antígeno B7-H1 , Imunoterapia , Irídio , Animais , Irídio/química , Irídio/farmacologia , Antígeno B7-H1/metabolismo , Camundongos , Humanos , Imunoterapia/métodos , Fator 3 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química
5.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , Camundongos
6.
Front Bioeng Biotechnol ; 12: 1360506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576447

RESUMO

The clinical application of the recombinant human granulocyte colony-stimulating factor (rhG-CSF) is restricted by its short serum half-life. Herein, site-selective modification of the N-terminus of rhG-CSF with PAL-PEG3-Ph-CHO was used to develop a long-acting rhG-CSF. The optimized conditions for rhG-CSF modification with PAL-PEG3-Ph-CHO were: reaction solvent system of 3% (w/v) Tween 20 and 30 mM NaCNBH3 in acetate buffer (20 mmol/L, pH 5.0), molar ratio of PAL-PEG3-Ph-CHO to rhG-CSF of 6:1, temperature of 20°C, and reaction time of 12 h, consequently, achieving a PAL-PEG3-Ph-rhG-CSF product yield of 70.8%. The reaction mixture was purified via preparative liquid chromatography, yielding the single-modified product PAL-PEG3-Ph-rhG-CSF with a HPLC purity exceeding 95%. The molecular weight of PAL-PEG3-Ph-rhG-CSF was 19297 Da by MALDI-TOF-MS, which was consistent with the theoretical value. The circular dichroism analysis revealed no significant change in its secondary structure compared to unmodified rhG-CSF. The PAL-PEG3-Ph-rhG-CSF retained 82.0% of the in vitro biological activity of unmodified rhG-CSF. The pharmacokinetic analyses showed that the serum half-life of PAL-PEG3-Ph-rhG-CSF was 7.404 ± 0.777 h in mice, 4.08 times longer than unmodified rhG-CSF. Additionally, a single subcutaneous dose of PAL-PEG3-Ph-rhG-CSF presented comparable in vivo efficacy to multiple doses of rhG-CSF. This study demonstrated an efficacious strategy for developing long-acting rhG-CSF drug candidates.

7.
Bioorg Chem ; 147: 107325, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583247

RESUMO

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.

8.
J Inorg Biochem ; 256: 112574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677004

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 µM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.


Assuntos
Antineoplásicos , Autofagia , Complexos de Coordenação , Mitocôndrias , Espécies Reativas de Oxigênio , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
Nat Prod Bioprospect ; 14(1): 23, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517590

RESUMO

In this study, two new kaurane diterpenes (16, 17), together with 12 lignans (1-12), a triterpene (15), and two other compounds (13, 14) were isolated from the woods of Agathis dammara. The structure of the new compound was determined by HR ESIMS and 1D/2D NMR spectroscopy, and its absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. Compounds 5, 11, 14 exhibit significant hypoglycaemic activity in zebrafish, and their mechanism of action is to enhance glucose uptake in zebrafish.

10.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38452249

RESUMO

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Cisplatino/farmacologia , Linhagem Celular Tumoral , Ciclo Celular , Mitocôndrias , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/metabolismo
11.
Inorg Chem ; 63(13): 5908-5915, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494632

RESUMO

It remains a significant hurdle for discovering birefringent materials in the deep ultraviolet (DUV, λ < 200 nm). It is well-known that the OH anions are recognized for their capability to eliminate the dangling bonds from terminal oxygen atoms, promoting the ultraviolet (UV) cutoff edge blueshift and regulating the crystal structure. Here, two new barium hydroxyborates, Ba3B11O18(OH)3(H2O) (BaBOH) and Na2BaB10O16(OH)2(H2O)2 (NaBaBOH), were designed and synthesized while displaying different dimensions. Remarkably, BaBOH presents novel one-dimensional (1D) [B22O37(OH)6]∞ double-chains formed by a new fundamental building block (FBB)[B11O21(OH)3]. NaBaBOH possesses a 2D [B10O16(OH)2]∞ layer with a less common FBB [B10O19(OH)2]. They enrich the structural diversity of hydroxyborates. Moreover, NaBaBOH exhibits a broad transparent window within the DUV spectral range (<190 nm) and possesses a favorable birefringence of 0.064. Furthermore, detailed summaries and structural comparisons have been implemented for all hydroxyborates containing alkali and alkaline-earth metals. This reveals that the OH group modulation strategy can be appropriately employed for the structural design.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38430391

RESUMO

Nasopharyngeal carcinoma (NPC) is characterised by its remarkable geographical and ethnic distribution. The interplay between genetic susceptibility, environmental exposures, and Epstein-Barr virus (EBV) infections is indicated in the development of NPC. Exposure to tobacco smoking, dietary factors, and inhalants has been associated with the risk of NPC. Genetic association studies have revealed NPC-associated susceptibility loci, including genes involved in immune responses, xenobiotic metabolism, genome maintenance, and cell cycle regulation. EBV exposure timing and strain variation might play a role in its carcinogenicity, although further investigations are required. Other factors including medical history and oral hygiene have been implicated in NPC. Prevention strategies, including primary prevention and secondary prevention through early detection, are vital in reducing mortality and morbidity of NPC. The current review discusses the global and regional distribution of NPC incidences, the risk factors associated with NPC, and the public health implications of these insights. Future investigations should consider international, large-scale prospective studies to elucidate the mechanisms underlying NPC pathogenesis and develop individualized interventions for NPC.

13.
Mar Drugs ; 22(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393034

RESUMO

Six benzophenone derivatives, carneusones A-F (1-6), along with seven known compounds (7-13) were isolated from a strain of sponge-derived marine fungus Aspergillus carneus GXIMD00543. Their chemical structures were elucidated by detailed spectroscopic data and quantum chemical calculations. Compounds 5, 6, and 8 exhibited moderate anti-inflammatory activity on NO secretion using lipopolysaccharide (LPS)-induced RAW 264.7 cells with EC50 values of 34.6 ± 0.9, 20.2 ± 1.8, and 26.8 ± 1.7 µM, while 11 showed potent effect with an EC50 value of 2.9 ± 0.1 µM.


Assuntos
Anti-Inflamatórios , Aspergillus , Animais , Camundongos , Estrutura Molecular , Aspergillus/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7
14.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408314

RESUMO

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Assuntos
Neoplasias Pulmonares , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Peróxido de Hidrogênio , Hipóxia , Autofagia , Dano ao DNA , DNA , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Nutr Metab (Lond) ; 21(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166933

RESUMO

BACKGROUND: Type 1 diabetes is believed to be an autoimmune condition, characterized by destruction of insulin-producing cells, due to the detrimental inflammation in pancreas. Growing evidences have indicated the important role of type I interferon in the development of type 1 diabetes. METHODS: Trex1-deficient rats were generated by using CRISPR-Cas9. The fasting blood glucose level of rat was measured by a Roche Accuchek blood glucose monitor. The levels of insulin, islet autoantibodies, and interferon-ß were measured using enzyme-linked immunosorbent assay. The inflammatory genes were detected by quantitative PCR and RNA-seq. Hematein-eosin staining was used to detect the pathological changes in pancreas, eye and kidney. The pathological features of kidney were also detected by Masson trichrome and periodic acid-Schiff staining. The distribution of islet cells, immune cells or ssDNA in pancreas was analyzed by immunofluorescent staining. RESULTS: In this study, we established a Trex1-deletion Sprague Dawley rat model, and unexpectedly, we found that the Trex1-/- rats spontaneously develop type 1 diabetes. Similar to human diabetes, the hyperglycemia in rats is accompanied by diabetic complications such as diabetic nephropathy and cataract. Mechanistical investigation revealed the accumulation of ssDNA and the excessive production of proinflammatory cytokines, including IFN-ß, in Trex1 null pancreas. These are likely contributing to the inflammation in pancreas and eventually leading to the decline of pancreatic ß cells. CONCLUSIONS: Our study links the DNA-induced chronic inflammation to the pathogenesis of type 1 diabetes, and also provides an animal model for type 1 diabetes studies.

16.
Int J Biol Macromol ; 259(Pt 2): 129394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218277

RESUMO

In this study, the green synthesis of chitosan/glutamic acid/agarose/Ag (Chi/GA/Aga/Ag) nanocomposite hydrogel was obtained via in situ reduction of Ag ions during the crosslinking process of chitosan-agarose double network hydrogels. The rich hydroxyl, carboxyl and amino groups in both agarose, chitosan, and glutamic acid can effectively control the growth, dispersion and immobilization of nearly spherical Ag nanoparticles (70 nm) in the Chi/GA/Aga/Ag composite hydrogel. Glutamic acids can act as the structure-directing agents to induce the formation of chitosan/glutamic acid hydrogel. The mechanical strength of the Chi/GA/Aga/Ag composite hydrogel can be enhanced by the introduction of chitosan-agarose double network hydrogels, which guarantees that it can be directly used as a visual test strip of the Cu ions with a lower detection limit of 1 µM and an active catalyst for the reduction of 4-nitrophenol within 18 min. The quantitative and semi-quantitative measurement of Cu ions can be carried out by UV-visible absorption spectroscopy and visual measurement, which provided a convenient, portable, and "naked-eye" solid-state detection methodology.


Assuntos
Antígenos de Grupos Sanguíneos , Quitosana , Nanopartículas Metálicas , Nitrofenóis , Sefarose/química , Prata/química , Nanogéis , Quitosana/química , Ácido Glutâmico , Nanopartículas Metálicas/química , Colorimetria , Hidrogéis/química
17.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38234133

RESUMO

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Assuntos
Artrite Reumatoide , Diterpenos , Orthosiphon , Humanos , Orthosiphon/química , Orthosiphon/metabolismo , Abietanos , Artrite Reumatoide/tratamento farmacológico , Fator de Necrose Tumoral alfa , Diterpenos/farmacologia , Diterpenos/química , NF-kappa B/metabolismo
18.
J Ethnopharmacol ; 324: 117780, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38278377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Luohanguo Qingfei granules (LQG) is a Chinese patent medicine, clinically used to treat flu-like symptoms including cough with yellow phlegm, impeded phlegm, dry throat and tongue. However, the protective activity of LQG against influenza infection is indeterminate. AIM OF THE STUDY: This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. MATERIALS AND METHODS: In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively. RESULTS: LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-ß transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG. CONCLUSION: These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-ß antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferon Tipo I , Animais , Camundongos , Humanos , Interferon Tipo I/farmacologia , Interferon Tipo I/uso terapêutico , Influenza Humana/tratamento farmacológico , Transdução de Sinais , Antivirais/farmacologia , Antivirais/uso terapêutico , Imunidade Inata
19.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119648, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092136

RESUMO

Diapause is a widespread adaptation of insects that enables them to survive during unfavorable seasons and is characterized by suppressed metabolism and increased lifespan. Previous works have demonstrated that high levels of reactive oxygen species (ROS) and hypoxia-inducible factor-1α (HIF-1α) in the pupal brain of the moth Helicoverpa armigera induce diapause and extend lifespan by downregulating mitochondrial transcription factor A (TFAM). However, the molecular mechanisms of ROS-HIF-1α regulating metabolic activity to extend lifespan are still poorly understood. Here, we show that the mitochondrial abundance in diapause-type pupal brains is markedly lower than that in their nondiapause-type pupae, suggesting that ROS-HIF-1α signaling negatively regulates the number of mitochondria. The protease Lon, a major mitochondrial matrix protease, can respond to ROS signals. It is activated by transcription factor HIF-1α, which specifically binds the LON promoter to promote its expression. A high level of LON mediates the degradation of TFAM, which is a crucial factor in regulating mitochondrial abundance and metabolic activity. We believe this is the first report that a previously unrecognized regulatory pathway, ROS-HIF-1α-LON-TFAM, reduces mitochondrial activity to induce diapause, extending insect lifespan.


Assuntos
Proteínas de Ligação a DNA , Longevidade , Proteínas Mitocondriais , Mariposas , Animais , Espécies Reativas de Oxigênio/metabolismo , Longevidade/genética , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mariposas/genética , Endopeptidases/metabolismo
20.
Microbes Infect ; 26(1-2): 105244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37914020

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Assuntos
Alcaloides , Corydalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Porphyromonas gingivalis/metabolismo , Corydalis/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Macrófagos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA