Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195474

RESUMO

Ferroptosis has emerged as a potential mechanism for enhancing the efficacy of chemotherapy in cancer treatment. By suppressing nuclear factor erythroid 2-related factor 2 (Nrf2), cancer cells may lose their ability to counteract the oxidative stress induced by chemotherapy, thereby becoming more susceptible to ferroptosis. In this study, we investigate the potential of penexanthone A (PXA), a xanthone dimer component derived from the endophytic fungus Diaporthe goulteri, obtained from mangrove plant Acanthus ilicifolius, to enhance the therapeutic effect of cisplatin (CDDP) on colorectal cancer (CRC) by inhibiting Nrf2. The present study reported that PXA significantly improved the ability of CDDP to inhibit the activity of and induce apoptosis in CRC cells. Moreover, PXA was found to increase the level of oxidative stress and DNA damage caused by CDDP. In addition, the overexpression of Nrf2 reversed the DNA damage and ferroptosis induced by the combination of PXA and CDDP. In vivo experiments using zebrafish xenograft models demonstrated that PXA enhanced the therapeutic effect of CDDP on CRC. These studies suggest that PXA enhanced the sensitivity of CRC to CDDP and induce ferroptosis by targeting Nrf2 inhibition, indicating that PXA might serve as a novel anticancer drug in combination chemotherapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Ferroptose , Fator 2 Relacionado a NF-E2 , Xantonas , Peixe-Zebra , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Ferroptose/efeitos dos fármacos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Xantonas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Biosens Bioelectron ; 263: 116604, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094293

RESUMO

Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.


Assuntos
Técnicas Biossensoriais , Colorimetria , Aprendizado Profundo , Flavonoides , Smartphone , Colorimetria/instrumentação , Colorimetria/métodos , Flavonoides/análise , Flavonoides/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Citrus/química , Nariz Eletrônico , Cério/química , Limite de Detecção , Benzidinas/química
3.
Food Chem X ; 23: 101605, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39071922

RESUMO

Aflatoxin B1 (AFB1) is a potent toxin in food, necessitating rapid, instant, and sensitive detection. We have engineered an electrochemical sensor to monitor AFB1 using a system composed of Fe3O4-NH4/AuNPs/apt-S1. The aptamer specifically recognizes AFB1, while 'S1' is functionalized with methylene blue to enhance the current. The RecJf exonuclease promotes the formation of the electrochemical strategy. The Fe3O4 component, with its magnet properties, enables a rapid separation of solids and liquids without the need for instrumentation. The sensor exhibits a linear range for AFB1 ranging from 1 ng to 10 µg. The regression equation is I(nA) = 446.8 × logc+2085 (where I and c represent the peak current and AFB1 concentration, respectively). The correlation coefficient is 0.9508, and the detection limit is 3.447 nM. The relative standard deviation of AFB1 in peanut oil ranges from 4.80% to 6.80%. These results demonstrate that the sensor has high sensitivity, stability, repeatability, and specificity for AFB1 detection.

4.
J Sci Food Agric ; 104(12): 7143-7158, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38629663

RESUMO

BACKGROUND: Oyster polypeptide (OP) is a mixture of oligopeptides extracted from oysters through enzyme lysis, separation, and purification. It is associated with immunomodulatory effects, but the underlying mechanisms are not known. This study therefore combined proton nuclear magnetic resonance (1H-NMR) urinary metabolomics and 16S rRNA gene sequencing of the gut microbiome to determine the immunoprotective mechanisms of OP in rats subjected to cyclophosphamide-induced immunosuppression. RESULTS: Oyster polypeptide restored the body weight and the structure of spleen and thymus in rats with cyclophosphamide-induced immunosuppression. It upregulated the levels of white blood cells (WBCs), hemoglobin (HGB), platelets (PLT), red blood cells (RBCs), immunoglobulin G (IgG), immunoglobulin M (IgM), cytokines such as interleukin­6 (IL-6) and tumor necrosis factor-α (TNF-α), and increased the numbers of CD3+ and CD4+ T cells in the immunosuppressed rats. The 1H-NMR metabolomics results showed that OP significantly reversed the levels of ten metabolites in urine, including 2-oxoglutarate, citrate, dimethylamine, taurine, N-phenylacetylglycine, alanine, betaine, creatinine, uracil, and benzoate. The 16S rRNA gene sequencing results showed that OP restored the gut microbiome homeostasis by increasing the abundance of beneficial bacteria and reducing the abundance of pathogenic bacteria. Finally, a combination of metabolomics and microbiomics found that the metabolism of taurine and hypotaurine, and the metabolism of alanine, aspartate, and glutamate were disturbed, but these metabolic pathways were restored by OP. CONCLUSION: This study demonstrated that OP had immunoprotective effects in rats with cyclophosphamide-induced immunosuppression by restoring key metabolic pathways and the gut microbiome homeostasis. Our findings provide a framework for further research into the immunoregulatory mechanisms of OP and its potential use in drugs and nutritional supplements. © 2024 Society of Chemical Industry.


Assuntos
Ciclofosfamida , Microbioma Gastrointestinal , Ostreidae , Peptídeos , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeos/farmacologia , Ostreidae/microbiologia , Ostreidae/química , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/efeitos dos fármacos , RNA Ribossômico 16S/genética , Humanos , Baço/efeitos dos fármacos , Baço/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Imunossupressores/farmacologia , Imunoglobulina G , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Citocinas/metabolismo , Citocinas/genética
5.
Future Microbiol ; 19(7): 595-606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629885

RESUMO

Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.


[Box: see text].


Assuntos
Alcaloides , Antibacterianos , Biofilmes , Corydalis , Porphyromonas gingivalis , Porphyromonas gingivalis/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Corydalis/química , Humanos , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Virulência/efeitos dos fármacos , Linhagem Celular , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/tratamento farmacológico
6.
Biomed Chromatogr ; 38(6): e5862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684194

RESUMO

Antibiotic-associated diarrhea is a common adverse reaction caused by the widespread use of antibiotics. The decrease in probiotics is one of the reasons why antibiotics cause drug-induced diarrhea. However, few studies have addressed the intrinsic mechanism of antibiotics inhibiting probiotics. To investigate the underlying mechanism of levofloxacin against Bifidobacterium adolescentis, we used a metabolomics mass spectrometry-based approach and molecular docking analysis for a levofloxacin-induced B. adolescentis injury model. The results showed that levofloxacin reduced the survival rate of B. adolescentis and decreased the number of B. adolescentis. The untargeted metabolomics analysis identified 27 potential biomarkers, and many of these metabolites are involved in energy metabolism, amino acid metabolism and the lipid metabolism pathway. Molecular docking showed that levofloxacin can bind with aminoacyl-tRNA synthetase and lactic acid dehydrogenase. This result provides a novel insight into the mechanism of the adverse reactions of levofloxacin.


Assuntos
Bifidobacterium adolescentis , Levofloxacino , Metabolômica , Simulação de Acoplamento Molecular , Levofloxacino/química , Levofloxacino/farmacologia , Metabolômica/métodos , Bifidobacterium adolescentis/metabolismo , Bifidobacterium adolescentis/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma/efeitos dos fármacos , Espectrometria de Massas/métodos , Antibacterianos/farmacologia , Antibacterianos/química
7.
Talanta ; 271: 125646, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218058

RESUMO

Uric acid (UA) monitoring is the most effective method for diagnosis and treatment of gout, hyperuricemia, hypertension, and other diseases. However, challenges remain regarding detection efficiency and rapid on-site detection. Here, we first synthesized a CdS/Au/TiO2-NTAs Z-scheme heterojunction material using a titanium dioxide nanotube array (TiO2-NTAs) as the substrate and modified with gold nanoparticles (Au) and cadmium sulfide particles (CdS). This material achieves bandgap alignment to generate a large number of electron-hole pairs under illumination. Then, using CdS/Au/TiO2-NTAs as the working electrode and molecularly imprinted polymers (MIP) as the recognition unit, we constructed a portable photoelectrochemical (PEC) sensor for non-invasive instant detection of UA concentration in human saliva, which has unique advantages in the field of high-sensitivity PEC instant detection. The portable MIP-PEC sensor achieves a linear range of 0.01-50 µM and a detection limit as low as 5.07 nM (S/N = 3). At the same time, the portable MIP-PEC sensor exhibits excellent sensitivity, specificity as well as stability, and shows no statistically significant difference compared to traditional high-performance liquid chromatography (HPLC) in practical sample detection. Compared to traditional PEC modes, this work demonstrates a novel and universal method for high-sensitivity instant detection in the field of PEC.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , Humanos , Ácido Úrico , Ouro/química , Saliva , Nanotubos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
8.
J Ethnopharmacol ; 324: 117780, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38278377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Luohanguo Qingfei granules (LQG) is a Chinese patent medicine, clinically used to treat flu-like symptoms including cough with yellow phlegm, impeded phlegm, dry throat and tongue. However, the protective activity of LQG against influenza infection is indeterminate. AIM OF THE STUDY: This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. MATERIALS AND METHODS: In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively. RESULTS: LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-ß transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG. CONCLUSION: These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-ß antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferon Tipo I , Animais , Camundongos , Humanos , Interferon Tipo I/farmacologia , Interferon Tipo I/uso terapêutico , Influenza Humana/tratamento farmacológico , Transdução de Sinais , Antivirais/farmacologia , Antivirais/uso terapêutico , Imunidade Inata
9.
Microbes Infect ; 26(1-2): 105244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37914020

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Assuntos
Alcaloides , Corydalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Porphyromonas gingivalis/metabolismo , Corydalis/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Macrófagos/microbiologia
10.
Food Chem ; 439: 138142, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081096

RESUMO

Spices have long been popular worldwide. Besides serving as aromatic and flavorful food and cooking ingredients, many spices exhibit notable bioactivity. Quality evaluation methods are essential for ensuring the quality and flavor of spices. However, existing methods typically focus on the content of particular components or certain aspects of bioactivity. For a systematic evaluation of spice quality, we herein propose a comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis. Cinnamomum cassia was used as a representative example to illustrate this approach. Near-infrared spectroscopy and chemometric methods were combined to predict the geographical origin, cinnamaldehyde content, ash content, antioxidant activity, and integrated membership function value. All the optimal prediction models displayed good predictive ability (correlation coefficient of prediction > 0.9, residual predictive deviation > 2.1). The proposed approach can provide a valuable reference for the rapid and comprehensive quality evaluation of spices.


Assuntos
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Especiarias
11.
J Ethnopharmacol ; 319(Pt 3): 117327, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37871755

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litchi chinensis Sonn. (Litchi) seed, a traditional Chinese medicine, is habitually used in the clinical treatment of prostate cancer (PCa)-induced bone pain. In our previous study, flavonoids have been identified as the active ingredient of litchi seed against PCa. However, its anti-tumor activities in bone and associated molecular mechanisms are still unclear. AIM OF THE STUDY: To investigate the effects and underlying mechanisms of total flavonoids of litchi seed (TFLS) on the growth of PCa in bone. MATERIALS AND METHODS: The effect of TFLS on the growth of PCa in bone was observed using a mouse model constructed with tibial injection of luciferase-expressing RM1-luc cells. Conditioned medium (CM) from bone marrow stromal cells OP9 and CM treated with TFLS (T-CM) was used to investigate the effect on the proliferation, colony formation, and apoptosis of PCa cells (LNCaP, PC3, RM1). An antibody microarray was performed to detect cytokine expression in the supernatant fraction of OP9 cell cultures treated with TFLS or left untreated. Western blot assay was employed to determine the expression and activity of HGFR and its key downstream proteins, Akt, mTOR, NF-κB, and Erk, in PCa cells. The potential target was further verified using immunofluorescence and immunohistochemistry assays. RESULTS: Treatment with TFLS (80 mg/kg, 24 days) significantly suppressed the growth of RM1 cells in bone. CM from bone marrow stromal cells OP9 stimulated the proliferation and colony formation of the PCa cells as well as inhibited the apoptosis of PC3 cells, while T-CM reversed the effects mediated by OP9 cells in vitro. In an antibody array assay, TFLS regulated the majority of cytokines in OP9 cell culture supernatant, among which HGF, HGFR, IGF-1R, and PDGF-AA showed the greatest fold changes. Mechanistically, CM upregulated HGFR and promoted phosphorylation of NF-κB while T-CM induced reduction of HGFR and dephosphorylation of NF-κB in PC3 cells. Moreover, T-CM inhibited NF-κB entry into PC3 cell nuclei. Data from in vivo experiments further confirmed the inhibitory effects of TFLS on NF-κB. CONCLUSION: TFLS suppresses the growth of PCa in bone through regulating bone microenvironment and the underlying mechanism potentially involves attenuation of the HGFR/NF-κB signaling axis.


Assuntos
Litchi , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Litchi/química , Litchi/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Transdução de Sinais , Neoplasias da Próstata/metabolismo , Citocinas/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Front Pharmacol ; 14: 1290175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908979

RESUMO

Owing to their unique physical and chemical properties and remarkable biological activities, marine biological resources are emerging as important sources of raw materials for producing health products, food, and cosmetics. Collagen accounts for approximately 70% of the sea cucumber body wall, and its hydrolysis produces small-molecule collagen polypeptides with diverse biological functions, such as anticancer, antihypertensive, immune-enhancing, memory-enhancing, and cartilage tissue repairing effects. Notably, the potential of sea cucumber polypeptides in combination with anticancer therapy has garnered considerable attention. Determining the composition and structure of sea cucumber polypeptides and exploring their structure-activity relationships will aid in obtaining an in-depth understanding of their diverse biological activities and provide scientific insights for the development and utilization of these polypeptides. Therefore, this review focuses on the amino acid structures and activities of sea cucumber polypeptides of varying molecular weights. This study also provides an overview of the biological activities of various sea cucumber polypeptides and aims to establish a scientific basis for their development.

13.
Anal Methods ; 15(39): 5166-5180, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37753596

RESUMO

Millettia speciosa (M. speciosa) Champ (MSC) is a healthy food type with medicinal and edible homology, which is now considered a clinically significant anti-rheumatoid arthritis medicine. However, there is currently no standardized or generally accepted research strategy by which we can assess M. speciosa. Thus, it is essential to develop novel theories, strategies and evaluation methods for the scientific quality control of M. speciosa. Herein, our use ultra-high-performance liquid chromatography (UPLC)-MS/MS analysis identified 12 common bioactive components absorbed into MSC serum. Next, network pharmacology analysis exhibited that 5 MSC components may be those active components in treating rheumatoid arthritis and may be considered potential quality markers. These 5 components were then quantified using a fast UPLC approach, based on the quality marker of measurability, showing that lenticin can be regarded as the MSC quality marker. The cumulative study findings, based on systematic assessment of chemical composition both in vivo and in vitro, and the potential efficacy of M. speciosa, provide a novel approach for M. speciosa quality control.

14.
Chem Biodivers ; 20(8): e202300028, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390332

RESUMO

The study aims to explore the effect and mechanism of total alkaloids of Corydalis saxicola Bunting (CSBTA) in the treatment of radiation induced oral mucositis (RIOM) through network pharmacology and molecular docking. The components and corresponding targets of Corydalis saxicola Bunting were screened by literature review. RIOM related targets were obtained in GeneCards. Cytoscape software was used to construct the component-target-pathway network. Protein-Protein Interaction (PPI) networks was constructed by String database. GO and KEGG enrichment analyses were performed by Metascape. AutoDock Vina 4.2 software was used for molecular docking. There were 26 components of CSBTA targeting 61 genes related to RIOM. Through Cytoscape and PPI analysis, 15 core target genes of CSBTA for treating RIOM were identified. GO functional analysis indicated that CSBTA might play a role through kinase binding and protein kinase activation. KEGG pathway analysis showed that the core targets of CSBTA were mainly focused on cancer and reactive oxygen species (ROS) pathway. The results of molecular docking showed that CSBTA had strong binding energy with target protein including SRC, AKT and EGFR. The study demonstrates that CSBTA may treat RIOM by affecting SRC, AKT and EGFR through ROS pathway.


Assuntos
Alcaloides , Corydalis , Medicamentos de Ervas Chinesas , Estomatite , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Alcaloides/farmacologia , Estomatite/tratamento farmacológico , Receptores ErbB
15.
Chem Biodivers ; 20(8): e202201255, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380608

RESUMO

This study investigated the effect of Corydalis saxicola Bunting total alkaloids (CSBTA) on pyroptosis in macrophages (Mϕ). In the Mϕ pyroptosis model, an inverted fluorescence microscope was used to assess cell pyroptosis, while a scanning electron microscope was used to observe morphological changes in Mϕ. NLR family pyrin domain-containing 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) expression levels were detected by polymerase chain reaction and western blotting, whereas interleukin-1 (IL-1) and interleukin-18 (IL-18) expression levels were measured by an enzyme-linked immunosorbent assay. After pretreatment with CSBTA or the caspase-1 inhibitor, acetyl-tyrosyl-valyl-alanyl-aspartyl-chloromethylketone (Ac-YVAD-cmk), it was discovered that NLRP3, caspase-1, and GSDMD expressions were significantly reduced at both the mRNA and protein levels, as were IL-1 and IL-18 levels. The inhibitory effects of CSBTA and Ac-YVAD-cmk did not differ significantly. These findings indicate that CSBTA blocks Porphyromonas gingivalis-lipopolysaccharide-induced Mϕ pyroptosis.


Assuntos
Alcaloides , Corydalis , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Corydalis/metabolismo , Alcaloides/farmacologia , Macrófagos/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Interleucina-1/farmacologia
16.
J Pharm Pharmacol ; 75(7): 951-968, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167442

RESUMO

OBJECTIVES: To explore the underlying mechanism of total flavonoids of Litchi seed (TFLS) in treating prostate cancer (PCa). METHODS: Cell Counting Kit-8 (CCK-8), EdU incorporation assay, trypan blue dye assay and colony formation assay were employed to evaluate the effect of TFLS on PCa in vitro. The xenograft mouse model was established to explore the anti-tumour effect of TFLS in vivo. Alterations in the metabolic profiles of the PC3 cells and mouse serum were obtained by untargeted metabolomics. Combination with metabolomics analysis and network pharmacology strategies, the potential targets were predicted and further validated by RT-qPCR. KEY FINDINGS: TFLS attenuated PCa progression both in vitro and in vivo. Metabolomics results yielded from cells and serum indicated that the anti-cancer effect of TFLS was correlated with synergistic modulation of five common metabolic pathways including glycerophospholipid metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism and steroid biosynthesis. Using in silico prediction and RT-qPCR analysis, we further revealed that TFLS exerted anti-PCa activities via regulating the expressions of nine genes, including MAOA, ACHE, ALDH2, AMD1, ARG1, PLA2G10, PLA2G1B, FDFT1 and SQLE. CONCLUSIONS: TFLS suppressed tumour proliferation in PCa, which may be associated with regulating lipid and amino acid metabolisms.


Assuntos
Medicamentos de Ervas Chinesas , Litchi , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Farmacologia em Rede , Metabolômica/métodos , Metaboloma , Neoplasias da Próstata/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Aldeído-Desidrogenase Mitocondrial
17.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204035

RESUMO

Bifidobacterium adolescentis is a probiotic. This research aimed to investigate the mechanism of antibiotics led to decrease in the number of B. adolescentis. The metabolomics approach was employed to explore the effects of amoxicillin on metabolism of B.adolescentis, while MTT assay and scanning electron microscopy were applied to analyse changes in viability and morphology of bacteria. Molecular docking was used to illuminate the mechanism by which amoxicillin acts on a complex molecular network. The results showed that increasing the concentration of amoxicillin led to a gradual decrease in the number of live bacteria. Untargeted metabolomics analysis identified 11 metabolites that change as a result of amoxicillin exposure. Many of these metabolites are involved in arginine and proline metabolism, glutathione metabolism, arginine biosynthesis, cysteine, and methionine metabolism, and tyrosine and phenylalanine metabolism. Molecular docking revealed that amoxicillin had a good binding effect on the proteins AGR1, ODC1, GPX1, GSH, MAT2A, and CBS. Overall, this research provides potential targets for screening probiotic regulatory factors and lays a theoretical foundation for the elucidation of its mechanisms.


Assuntos
Bifidobacterium adolescentis , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Metabolômica , Amoxicilina , Arginina
18.
J Ethnopharmacol ; 315: 116666, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37211189

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the main anti-liver fibrosis ingredients in CS are incompletely understood. AIM OF THE STUDY: To elucidate the main anti-liver fibrosis ingredients in CS and its underlying mechanism. MATERIAL AND METHODS: Firstly, spectrum-effect relationship (SER) strategy was applied to identify the major ingredients against liver fibrosis in CS. Subsequently, 1H NMR metabonomics and metagenomics sequencing techniques were used to clarify the intervention of palmatine (PAL) on liver fibrosis. Furthermore, the expression of tight junction proteins and the levels of liver inflammation factors were examined, the effect of PAL on microbiota was verified by FMT. RESULTS: The SER model revealed that PAL was the most important active ingredient in CS. 1H NMR fecal metabonomics showed that PAL could reserve the abnormal levels of gut microbial-mediated metabolites of liver fibrosis, such as isoleucine, taurine, butyrate, propionate, lactate, glucose, which mainly involved in amino acid metabolism, intestinal flora metabolism and energy metabolism. Metagenomics sequencing found that PAL could callback the abundance of s__Lactobacillus_murinus, s__Lactobacillus_reuteri, s__Lactobacillus_johnsonii, s__Lactobacillus_acidophilus and s__Faecalibaculum_rodentium to varying degree. Furthermore, the intestinal barrier function and the levels of hepatic inflammation factors were significantly ameliorated by PAL. FMT demonstrated that the therapeutic efficiency of PAL was closely associated with gut microbiota. CONCLUSION: The effects of CS on liver fibrosis were attributed in part to PAL by alleviating metabolic disorders and rebalancing gut microbiota. The SER strategy may be a useful method for the discovery of active constituents in natural plants.


Assuntos
Corydalis , Corydalis/química , Metagenômica , Metabolômica/métodos , Cirrose Hepática/tratamento farmacológico , Inflamação
19.
Toxicol Res (Camb) ; 12(2): 282-295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37125334

RESUMO

Background: Although many studies have shown that herbs containing aristolochic acids can treat various human diseases, AAΙ in particular has been implicated as a nephrotoxic agent. Methods and results: Here, we detail the nephrotoxic effect of AAΙ via an approach that integrated 1H NMR-based metabonomics and network pharmacology. Our findings revealed renal injury in mice after the administration of AAΙ. Metabolomic data confirmed significant differences among the renal metabolic profiles of control and model groups, with significant reductions in 12 differential metabolites relevant to 23 metabolic pathways. Among them, there were seven important metabolic pathways: arginine and proline metabolism; glycine, serine, and threonine metabolism; taurine and hypotaurine metabolism; ascorbate and aldehyde glycolate metabolism; pentose and glucosinolate interconversion; alanine, aspartate, and glutamate metabolism; and glyoxylate and dicarboxylic acid metabolism. Relevant genes, namely, nitric oxide synthase 1 (NOS1), pyrroline-5-carboxylate reductase 1 (PYCR1), nitric oxide synthase 3 (NOS3) and glutamic oxaloacetic transaminase 2 (GOT2), were highlighted via network pharmacology and molecular docking techniques. Quantitative real-time PCR findings revealed that AAI administration significantly downregulated GOT2 and NOS3 and significantly upregulated NOS1 and PYCR1 expression and thus influenced the metabolism of arginine and proline. Conclusion: This work provides a meaningful insight for the mechanism of AAΙ renal injury.

20.
Appl Biochem Biotechnol ; 195(11): 6478-6494, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36870027

RESUMO

Globally 80% type 2 diabetes mellitus (T2DM) patients suffer nonalcoholic fatty liver disease (NAFLD). The interplay of gut microbiota and endogenous metabolic networks has not yet been reported in the setting of T2DM with NAFLD. As such, this study utilized 16S rRNA gene sequencing to assess the changes in intestinal flora and nuclear magnetic resonance spectroscopy (1H NMR) to identify potential metabolites in a T2DM with NAFLD rat model. Spearman correlation analysis was performed to explore the relationship between gut microbiota and metabolites. Results revealed that among T2DM with NAFLD rats, diversity indexes of intestinal microbiota were distinctly decreased while levels of 18 bacterial genera within the intestinal tract were significantly altered. In addition, levels of eight metabolites mainly involved in the synthesis and degradation of ketone bodies, the TCA cycle, and butanoate metabolism were altered. Correlation analysis revealed that gut bacteria such as Blautia, Ruminococcus torques group, Allobaculum, and Lachnoclostridium strongly associate with 3-hydroxybutyrate, acetone, acetoacetate, 2-oxoglutarate, citrate, creatinine, hippurate, and allantoin. Our findings can provide a basis for future development of targeted treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/metabolismo , RNA Ribossômico 16S/genética , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA