RESUMO
Pseudoexfoliation syndrome (PEX) is a systemic, age-related disorder characterized by elastosis and extracellular matrix deposits. Its most significant ocular manifestation is an aggressive form of glaucoma associated with variants in the gene encoding lysyl oxidase-like 1 (LOXL1). Depending upon the population, variants in LOXL1 can impart risk or protection for PEX, suggesting the importance of genetic context. As LOXL1 protein levels are lower and the degree of elastosis is higher in people with PEX, we studied Loxl1-deficient mice on three different genetic backgrounds: C57BL/6 (BL/6), 129S×C57BL/6 (50/50) and 129S. Early onset and high prevalence of spontaneous pelvic organ prolapse in BL/6 Loxl1-/- mice necessitated the study of mice that were <2â months old. Similar to pelvic organ prolapse, most elastosis endpoints were the most severe in BL/6 Loxl1-/- mice, including skin laxity, pulmonary tropoelastin accumulation, expansion of Schlemm's canal and dilation of intrascleral veins. Interestingly, intraocular pressure was elevated in 50/50 Loxl1-/- mice, depressed in BL/6 Loxl1-/- mice and unchanged in 129S Loxl1-/- mice compared to that of control littermates. Overall, the 129S background was protective against most elastosis phenotypes studied. Thus, repair of elastin-containing tissues is impacted by the abundance of LOXL1 and genetic context in young animals.
Assuntos
Aminoácido Oxirredutases , Prolapso de Órgão Pélvico , Animais , Humanos , Camundongos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Olho/metabolismo , Patrimônio Genético , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , FemininoRESUMO
Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.
Assuntos
Síndrome de Exfoliação , Glaucoma de Ângulo Aberto , RNA Longo não Codificante , Humanos , Glaucoma de Ângulo Aberto/genética , RNA Longo não Codificante/genética , Proteína-Lisina 6-Oxidase/genética , Estudo de Associação Genômica Ampla , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Aminoácido Oxirredutases/genéticaRESUMO
ABBREVIATIONS: ATG4 (autophagy related 4 cysteine peptidase); ATG4A (autophagy related 4A cysteine peptidase); ATG4B (autophagy related 4B cysteine peptidase); ATG4C (autophagy related 4C cysteine peptidase); ATG4D (autophagy related 4D cysteine peptidase); Atg8 (autophagy related 8); GABARAP (GABA type A receptor-associated protein); GABARAPL1(GABA type A receptor-associated protein like 1); GABARAPL2 (GABA type A receptor-associated protein like 2); MAP1LC3A/LC3A (microtubule associated protein 1 light chain 3 alpha); MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta); mATG8 (mammalian Atg8); PE (phosphatidylethanolamine); PS (phosphatydylserine); SQSTM1/p62 (sequestosome 1).
Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína , Ácido gama-Aminobutírico , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , CamundongosRESUMO
Despite the great advances in autophagy research in the last years, the specific functions of the four mammalian Atg4 proteases (ATG4A-D) remain unclear. In yeast, Atg4 mediates both Atg8 proteolytic activation, and its delipidation. However, it is not clear how these two roles are distributed along the members of the ATG4 family of proteases. We show that these two functions are preferentially carried out by distinct ATG4 proteases, being ATG4D the main delipidating enzyme. In mammalian cells, ATG4D loss results in accumulation of membrane-bound forms of mATG8s, increased cellular autophagosome number and reduced autophagosome average size. In mice, ATG4D loss leads to cerebellar neurodegeneration and impaired motor coordination caused by alterations in trafficking/clustering of GABAA receptors. We also show that human gene variants of ATG4D associated with neurodegeneration are not able to fully restore ATG4D deficiency, highlighting the neuroprotective role of ATG4D in mammals.
Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Doenças Neurodegenerativas/genética , Sequência de Aminoácidos , Animais , Autofagia , Modelos Animais de Doenças , Humanos , Mamíferos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologiaRESUMO
Autophagy is a major catabolic process whereby autophagosomes deliver cytoplasmic content to the lytic compartment for recycling. Autophagosome formation requires two ubiquitin-like systems conjugating Atg12 with Atg5, and Atg8 with lipid phosphatidylethanolamine (PE), respectively. Genetic suppression of these systems causes autophagy-deficient phenotypes with reduced fitness and longevity. We show that Atg5 and the E1-like enzyme, Atg7, are rate-limiting components of Atg8-PE conjugation in Arabidopsis. Overexpression of ATG5 or ATG7 stimulates Atg8 lipidation, autophagosome formation, and autophagic flux. It also induces transcriptional changes opposite to those observed in atg5 and atg7 mutants, favoring stress resistance and growth. As a result, ATG5- or ATG7-overexpressing plants exhibit increased resistance to necrotrophic pathogens and oxidative stress, delayed aging and enhanced growth, seed set, and seed oil content. This work provides an experimental paradigm and mechanistic insight into genetic stimulation of autophagy in planta and shows its efficiency for improving plant productivity.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Autofagia/genética , Aptidão Genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Transdução de Sinais/genéticaRESUMO
In the last years, autophagy has been revealed as an essential pathway for multiple biological processes and physiological functions. As a catabolic route, autophagy regulation by nutrient availability has been evolutionarily conserved from yeast to mammals. On one hand, autophagy induction by starvation is associated with a significant loss in body weight in mice. Here, we demonstrate that both genetic and pharmacological inhibition of the autophagy process compromise weight loss induced by starvation. Moreover, autophagic potential also impacts on weight gain induced by distinct hypercaloric regimens. Atg4b-deficient mice, which show limited autophagic competence, exhibit a major increase in body weight in response to distinct obesity-associated metabolic challenges. This response is characterized by the presence of larger adipocytes in visceral fat tissue, increased hepatic steatosis, as well as reduced glucose tolerance and attenuated insulin responses. Similarly, autophagy-deficient mice are more vulnerable to experimentally induced type-I diabetes, showing an increased susceptibility to acute streptozotocin administration. Notably, pharmacological stimulation of autophagy in wild-type mice by spermidine reduced both weight gain and obesity-associated alterations upon hypercaloric regimens. Altogether, these results indicate that systemic autophagic activity influences the resilience of the organism to weight gain induced by high-calorie diets, as well as to the obesity-associated features of both type-1 and type-2 diabetes.
Assuntos
Autofagia , Dieta/efeitos adversos , Células Secretoras de Insulina/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Proteínas Relacionadas à Autofagia/deficiência , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Cisteína Endopeptidases/deficiência , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologiaRESUMO
The caspase-related protease separase (EXTRA SPINDLE POLES, ESP) plays a major role in chromatid disjunction and cell expansion in Arabidopsis thaliana. Whether the expansion phenotypes are linked to defects in cell division in Arabidopsis ESP mutants remains elusive. Here we present the identification, cloning and characterization of the gymnosperm Norway spruce (Picea abies, Pa) ESP. We used the P. abies somatic embryo system and a combination of reverse genetics and microscopy to explore the roles of Pa ESP during embryogenesis. Pa ESP was expressed in the proliferating embryonal mass, while it was absent in the suspensor cells. Pa ESP associated with kinetochore microtubules in metaphase and then with anaphase spindle midzone. During cytokinesis, it localized on the phragmoplast microtubules and on the cell plate. Pa ESP deficiency perturbed anisotropic expansion and reduced mitotic divisions in cotyledonary embryos. Furthermore, whilst Pa ESP can rescue the chromatid nondisjunction phenotype of Arabidopsis ESP mutants, it cannot rescue anisotropic cell expansion. Our data demonstrate that the roles of ESP in daughter chromatid separation and cell expansion are conserved between gymnosperms and angiosperms. However, the mechanisms of ESP-mediated regulation of cell expansion seem to be lineage-specific.
Assuntos
Anáfase , Picea/citologia , Picea/enzimologia , Proteínas de Plantas/metabolismo , Sementes/citologia , Sementes/enzimologia , Separase/metabolismo , Sequência de Aminoácidos , Anisotropia , Proliferação de Células , Cromossomos de Plantas/genética , Clonagem Molecular , Citocinese , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Microtúbulos/metabolismo , Filogenia , Picea/embriologia , Transporte Proteico , Sementes/embriologia , Análise de Sequência de ProteínaRESUMO
Climatic droplet keratopathy (CDK) is an acquired and potentially handicapping cornea degenerative disease that is highly prevalent in certain rural communities around the world. It predominantly affects males over their forties. It has many other names such as Bietti's band-shaped nodular dystrophy, Labrador keratopathy, spheroidal degeneration, chronic actinic keratopathy, oil droplet degeneration, elastoid degeneration and keratinoid corneal degeneration. CDK is characterized by the haziness and opalescence of the cornea's most anterior layers which go through three stages with increasing severity. Globular deposits of different sizes may be histopathologically observed under the corneal epithelium by means of light and electron microscopy. The coalescence and increased volume of these spherules may cause the disruption of Bowman's membrane and the elevation and thinning of the corneal epithelium. The exact aetiology and pathogenesis of CDK are unknown, but they are possibly multifactorial. The only treatment in CDK advanced cases is a corneal transplantation, which in different impoverished regions of the world is not an available option. Many years ago, the clinical and histological aspects of this disease were described in several articles. This review highlights new scientific evidence of the expanding knowledge on CDK's pathogenesis which will open the prospect for new therapeutic interventions.
Assuntos
Córnea/patologia , Distrofias Hereditárias da Córnea/patologia , Animais , Ácido Ascórbico/uso terapêutico , Distrofias Hereditárias da Córnea/etiologia , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/terapia , Transplante de Córnea , Modelos Animais de Doenças , Humanos , Fatores SexuaisRESUMO
Although animals eliminate apoptotic cells using macrophages, plants use cell corpses throughout development and disassemble cells in a cell-autonomous manner by vacuolar cell death. During vacuolar cell death, lytic vacuoles gradually engulf and digest the cytoplasmic content. On the other hand, acute stress triggers an alternative cell death, necrosis, which is characterized by mitochondrial dysfunction, early rupture of the plasma membrane, and disordered cell disassembly. How both types of cell death are regulated remains obscure. In this paper, we show that vacuolar death in the embryo suspensor of Norway spruce requires autophagy. In turn, activation of autophagy lies downstream of metacaspase mcII-Pa, a key protease essential for suspensor cell death. Genetic suppression of the metacaspaseautophagy pathway induced a switch from vacuolar to necrotic death, resulting in failure of suspensor differentiation and embryonic arrest. Our results establish metacaspase-dependent autophagy as a bona fide mechanism that is responsible for cell disassembly during vacuolar cell death and for inhibition of necrosis.
Assuntos
Autofagia/fisiologia , Caspases/fisiologia , Morte Celular/fisiologia , Picea/citologia , Proteínas de Plantas/fisiologia , Caspases/genética , Caspases/metabolismo , Modelos Biológicos , Picea/genética , Picea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse FisiológicoRESUMO
PURPOSE: To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. METHODS: To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. RESULTS: This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. CONCLUSIONS: These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.
Assuntos
Doenças da Córnea/etnologia , Doenças da Córnea/genética , Predisposição Genética para Doença , Adulto , Argentina , Estudos de Casos e Controles , Cromossomos Humanos Y/genética , Doenças da Córnea/epidemiologia , DNA Mitocondrial/genética , Feminino , Variação Genética , Genética Populacional , Haplótipos , Humanos , Incidência , Indígenas Sul-Americanos , Masculino , Lágrimas/químicaRESUMO
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b (-/-) mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b (-/-) mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.
Assuntos
Autofagia , Colite/patologia , Colite/prevenção & controle , Cisteína Endopeptidases/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Intestinos/patologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Colite/tratamento farmacológico , Cisteína Endopeptidases/deficiência , Citocinas/metabolismo , Sulfato de Dextrana , Suscetibilidade a Doenças , Hematopoese/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/patologia , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/patologia , Celulas de Paneth/ultraestruturaRESUMO
Necrosis plays a fundamental role in plant physiology and pathology. When plants or plant cell cultures are subjected to abiotic stress they initiate rapid cell death with necrotic morphology. Likewise, when plants are attacked by pathogens, they develop necrotic lesions, the reaction known as hypersensitive response. Great advances in the understanding of signaling pathways that lead to necrosis during plant-pathogen interaction have been made in the last two decades using Arabidopsis thaliana as a model plant. Further understanding of these signaling pathways, as well as those regulating the execution phase of necrotic cell death per se would require a robust set of readout assays to detect and measure necrosis in various plant model systems. Here we provide description of such assays, beginning from electron microscopy, as the "gold standard" to diagnose necrosis. This is followed by two groups of biochemical and cytochemical assays used by our group to detect and quantify mitochondrial dysfunction and the loss of protoplast integrity during necrosis in Arabidopsis plants and cell suspension cultures of both Arabidopsis and Norway spruce.
Assuntos
Arabidopsis/citologia , Técnicas Citológicas/métodos , Picea/citologia , Trifosfato de Adenosina/metabolismo , Arabidopsis/ultraestrutura , Sobrevivência Celular , Células Cultivadas , Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Íons , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Necrose , Consumo de Oxigênio , Picea/embriologia , Picea/ultraestrutura , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , SuspensõesRESUMO
Human MMP-1 is a matrix metalloproteinase repeatedly associated with many pathological conditions, including cancer. Thus, MMP1 overexpression is a poor prognosis marker in a variety of advanced cancers, including colorectal, breast, and lung carcinomas. Moreover, MMP-1 plays a key role in the metastatic behavior of melanoma, breast, and prostate cancer cells. However, functional and mechanistic studies on the relevance of MMP-1 in cancer have been hampered by the absence of an in vivo model. In this work, we have generated mice deficient in Mmp1a, the murine ortholog of human MMP1. Mmp1a(-/-) mice are viable and fertile and do not exhibit obvious abnormalities, which has facilitated studies of cancer susceptibility. These studies have shown a decreased susceptibility to develop lung carcinomas induced by chemical carcinogens in Mmp1a(-/-) mice. Histopathological analysis indicated that tumors generated in Mmp1a(-/-) mice are smaller than those of wild-type mice, consistently with the idea that the absence of Mmp-1a hampers tumor progression. Proteomic analysis revealed decreased levels of chitinase-3-like 3 and accumulation of the receptor for advanced glycation end-products and its ligand S100A8 in lung samples from Mmp1a(-/-) mice compared with those from wild-type. These findings suggest that Mmp-1a could play a role in tumor progression by modulating the polarization of a Th1/Th2 inflammatory response to chemical carcinogens. On the basis of these results, we propose that Mmp1a knock-out mice provide an excellent in vivo model for the functional analysis of human MMP-1 in both physiological and pathological conditions.
Assuntos
Regulação Enzimológica da Expressão Gênica , Inflamação/metabolismo , Neoplasias Pulmonares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Animais , Carcinoma/metabolismo , Proliferação de Células , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Peptídeo Hidrolases/metabolismo , Prognóstico , UretanaRESUMO
Caloric restriction (CR) extends lifespan in various heterotrophic organisms ranging from yeasts to mammals, but whether a similar phenomenon occurs in plants remains unknown. Plants are autotrophs and use their photosynthetic machinery to convert light energy into the chemical energy of glucose and other organic compounds. As the rate of photosynthesis is proportional to the level of photosynthetically active radiation, the CR in plants can be modeled by lowering light intensity. Here, we report that low light intensity extends the lifespan in Arabidopsis through the mechanisms triggering autophagy, the major catabolic process that recycles damaged and potentially harmful cellular material. Knockout of autophagy-related genes results in the short lifespan and suppression of the lifespan-extending effect of the CR. Our data demonstrate that the autophagy-dependent mechanism of CR-induced lifespan extension is conserved between autotrophs and heterotrophs.