Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38180724

RESUMO

Mango processing generates significant amounts of residues (35-65%) that may represent environmental problems owed to improper disposal. The use of mango byproducts as substrates to produce hyaluronic acid (HA) is an attractive alternative to reduce the cost of substrate. In this study, we evaluated the potential of hydrolyzates from mango peels and seeds to produce HA by Streptococcus equi. subsp. zooepidemicus. The physicochemical characterization of mango residues showed that the seeds contain a higher amount of holocellulose (cellulose and hemicellulose), which amounts 54.2% (w/w) whereas it only represents 15.5% (w/w) in the peels. Mango peels, however, are composed mainly of hot water-extractives (62% w/w, that include sucrose, fructose, glucose and organic acids). A higher concentration of monosaccharides (39.8 g/L) was obtained from the enzymatic hydrolysis (with Macerex) of peels as compared to seeds (24.8 g/L with Celuzyme). From mango peels, hydrolyzates were obtained 0.6 g/L HA, while 0.9 g/L HA were obtained with hydrolyzates from mango seeds. These results demonstrate that mango byproducts have the potential to be used for production of HA.

2.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500793

RESUMO

The hyaluronic acid (HA) global market growth can be attributed to its use in medical, cosmetic, and pharmaceutical applications; thus, it is important to have validated, analytical methods to ensure confidence and security of its use (and to save time and resources). In this work, a size-exclusion chromatography method (HPLC-SEC) was validated to determine the concentration and molecular distribution of HA simultaneously. Analytical curves were developed for concentration and molecular weight in the ranges of 100-1000 mg/L and 0.011-2.200 MDa, respectively. The HPLC-SEC method showed repeatability and reproducibility greater than 98% and limits of detection and quantification of 12 and 42 mg/L, respectively, and was successfully applied to the analysis of HA from a bacterial culture, as well as cosmetic, and pharmaceutical products.


Assuntos
Cromatografia em Gel , Ácido Hialurônico/análise , Peso Molecular , Tamanho da Partícula
3.
Bioresour Technol ; 329: 124865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33639381

RESUMO

There is a great interest for replacing petroleum-derived chemical processes with biological processes to obtain fuels and plastics from industrial waste. Accordingly, Rhodopseudomonas species are capable of producing hydrogen and polyhydroxybutyrate. Culture conditions for production of both hydrogen and polyhydroxybutyrate with Rhodopseudomonas pseudopalustris (DSM 123) from tequila vinasses were analyzed. The production of hydrogen using tequila vinasses was higher with respect to two synthetic media. Replacing the headspace with N2 increased the production of hydrogen with respect to Argon, while a higher concentration of polyhydroxybutyrate was achieved using Argon as compared to N2. A higher concentration of phosphates increased the production of hydrogen (250 mL), while the highest concentration of polyhydroxybutyrate (305 mg/L) was accomplished when the bacteria were cultivated only with phosphates contained in tequila vinasses. This study revealed that the culture conditions for Rhodopseudomonas pseudopalustris (DSM 123) for production of hydrogen are the opposite of those for production of polyhydroxybutyrate.


Assuntos
Rodopseudomonas , Hidrogênio , Resíduos Industriais/análise , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA