RESUMO
The 2019 Undergraduate Biology Education Research Gordon Research Conference (UBER GRC), titled "Achieving Widespread Improvement in Undergraduate Education," brought together a diverse group of researchers and practitioners working to identify, promote, and understand widespread adoption of evidence-based teaching, learning, and success strategies in undergraduate biology. Graduate students and postdocs had the additional opportunity to present and discuss research during a Gordon Research Seminar (GRS) that preceded the GRC. This report provides a broad overview of the UBER GRC and GRS and highlights major themes that cut across invited talks, poster presentations, and informal discussions. Such themes include the importance of working in teams at multiple levels to achieve instructional improvement, the potential to use big data and analytics to inform instructional change, the need to customize change initiatives, and the importance of psychosocial supports in improving undergraduate student well-being and academic success. The report also discusses the future of the UBER GRC as an established meeting and describes aspects of the conference that make it unique, both in terms of facilitating dissemination of research and providing a welcoming environment for conferees.
Assuntos
Aprendizagem , Estudantes , Biologia , Pesquisa Biomédica , Congressos como Assunto , HumanosRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMO
The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity.
RESUMO
Although Zika virus (ZIKV) infection is often asymptomatic, in some cases, it can lead to birth defects in newborns or serious neurologic complications in adults. However, little is known about the interplay between immune and neural cells that could contribute to the ZIKV pathology. To understand the mechanisms at play during infection and the antiviral immune response, we focused on neural precursor cells (NPCs)-microglia interactions. Our data indicate that human microglia infected with the current circulating Brazilian ZIKV induces a similar pro-inflammatory response found in ZIKV-infected human tissues. Importantly, using our model, we show that microglia interact with ZIKV-infected NPCs and further spread the virus. Finally, we show that Sofosbuvir, an FDA-approved drug for Hepatitis C, blocked viral infection in NPCs and therefore the transmission of the virus from microglia to NPCs. Thus, our model provides a new tool for studying neuro-immune interactions and a platform to test new therapeutic drugs.
Assuntos
Infecção por Zika virus/imunologia , Zika virus/patogenicidade , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Microglia/patologia , Modelos Biológicos , Células-Tronco Neurais/patologia , Sofosbuvir/farmacologia , Zika virus/metabolismoRESUMO
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.