Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14463, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660158

RESUMO

At-sea distributions of seabird species are strongly associated with the distribution patterns of their prey, which are influenced by physical oceanic features. During breeding and non-breeding seasons, seabirds move extraordinary distances among different environments. However, foraging site fidelity by seabirds appears to be high in areas of known high productivity, such as frontal zones and upwellings. Here, we present a tracking study for the Peruvian diving-petrel Pelecanoides garnotii, an endemic seabird of the highly productive Humboldt Current System, to assess whether adults use the same foraging areas throughout the year, combining data from nest monitoring and global location sensors (GLS) deployed on 12 individuals between two breeding seasons (2013-2014 and 2014-2015), in Choros Island (29°15'S; 71°32'W), Chile. Two main foraging areas were registered. During the breeding season, adults moved in the northern direction, between 60 to 144 km away from their colony, foraging in areas with high primary productivity. During the non-breeding period, they moved to southern latitudes (~ 1200 km). Adults spent 37% and 63% of their time in flight/land and on/underwater activities, respectively. We determined that birds move northward from their colony during breeding, where prey availability seems more predictable throughout the year. However, during the non-breeding period, it is likely that other environmental factors influence the distribution pattern of the Peruvian diving-petrel.


Assuntos
Aves , Cruzamento , Humanos , Adulto , Animais , Peru , Estações do Ano , Chile
2.
Sci Rep ; 12(1): 13957, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028531

RESUMO

We describe a new taxon of terrestrial bird of the genus Aphrastura (rayaditos) inhabiting the Diego Ramírez Archipelago, the southernmost point of the American continent. This archipelago is geographically isolated and lacks terrestrial mammalian predators as well as woody plants, providing a contrasted habitat to the forests inhabited by the other two Aphrastura spp. Individuals of Diego Ramírez differ morphologically from Aphrastura spinicauda, the taxonomic group they were originally attributed to, by their larger beaks, longer tarsi, shorter tails, and larger body mass. These birds move at shorter distances from ground level, and instead of nesting in cavities in trees, they breed in cavities in the ground, reflecting different life-histories. Both taxa are genetically differentiated based on mitochondrial and autosomal markers, with no evidence of current gene flow. Although further research is required to define how far divergence has proceeded along the speciation continuum, we propose A. subantarctica as a new taxonomic unit, given its unique morphological, genetic, and behavioral attributes in a non-forested habitat. The discovery of this endemic passerine highlights the need to monitor and conserve this still-pristine archipelago devoid of exotic species, which is now protected by the recently created Diego Ramírez Islands-Drake Passage Marine Park.


Assuntos
Passeriformes , Melhoramento Vegetal , Animais , Ecossistema , Florestas , Fluxo Gênico , Humanos , Mamíferos
3.
Mol Biol Evol ; 36(8): 1671-1685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028398

RESUMO

Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.


Assuntos
Bico/anatomia & histologia , Aves/genética , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Aves/anatomia & histologia , Dieta , Comportamento Alimentar
4.
PLoS One ; 14(3): e0212441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865657

RESUMO

Human presence at intertidal areas could impact coastal biodiversity, including migratory waterbird species and the ecosystem services they provide. Assessing this impact is therefore essential to develop management measures compatible with migratory processes and associated biodiversity. Here, we assess the effects of human presence on the foraging opportunities of Hudsonian godwits (Limosa haemastica, a trans-hemispheric migratory shorebird) during their non-breeding season on Chiloé Island, southern Chile. We compared bird density and time spent foraging in two similar bays with contrasting disturbance levels: human presence (mostly seaweed harvesters accompanied by dogs) was on average 0.9±0.4 people per 10 ha in the disturbed bay, whereas it was negligible (95% days absent) in the non-disturbed bay. Although overall abundances were similar between bays, godwit density was higher in the non-disturbed bay throughout the low tide period. Both days after the start of the non-breeding season and tidal height significantly affected godwit density, with different effects in either bay. Time spent foraging was significantly higher in the non-disturbed bay (86.5±1.1%) than in the disturbed one (81.3±1.4%). As expected, godwit density significantly decreased with the number of people and accompanying dogs in the disturbed bay. Our results indicate that even a low density of people and dogs can significantly reduce the foraging opportunities of shorebirds. These constraints, coupled with additional flushing costs, may negatively affect godwits' pre-migratory fattening. Hence, as a first step we suggest limiting human presence within bays on Chiloé to 1 person per 10 ha and banning the presence of accompanying dogs in sensitive conservation areas.


Assuntos
Migração Animal , Biodiversidade , Charadriiformes/fisiologia , Conservação dos Recursos Naturais , Animais , Baías , Cães , Humanos
5.
Mol Ecol ; 26(18): 4831-4845, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734075

RESUMO

Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black-browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.


Assuntos
Aves , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Comportamento Predatório , Cifozoários/classificação , Animais , Ecossistema , Monitoramento Ambiental , Pesqueiros , Oceanos e Mares , Zooplâncton/classificação
6.
Mol Ecol Resour ; 15(5): 1046-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25594938

RESUMO

Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio-temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased nonamplification, or disruptions that may result in decreased polymorphism in nontarget species. Furthermore, high mutation rates and constraints on allele size may also with evolutionary time, promote an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next-generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri), that we tested for cross-species amplification in other Pachyptila and related sub-Antarctic species. We found that heterozygosity decreased and the proportion of nonamplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC , even though FST was more affected by null alleles. We observed a significantly nonlinear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross-species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa.


Assuntos
Aves/classificação , Aves/genética , Variação Genética , Repetições de Microssatélites , Filogenia , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA