Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233544

RESUMO

This study addressed the fouling issue in membrane distillation (M.D.) technology, a promising method for water purification and wastewater reclamation. To enhance the anti-fouling properties of the M.D. membrane, a tin sulfide (TS) coating onto polytetrafluoroethylene (PTFE) was proposed and evaluated with air gap membrane distillation (AGMD) using landfill leachate wastewater at high recovery rates (80% and 90%). The presence of TS on the membrane surface was confirmed using various techniques, such as Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive Spectroscopy (EDS), contact angle measurement, and porosity analysis. The results indicated the TS-PTFE membrane exhibited better anti-fouling properties than the pristine PTFE membrane, and its fouling factors (FFs) were 10.4-13.1% compared to 14.4-16.5% for the PTFE membrane. The fouling was attributed to pore blockage and cake formation of carbonous and nitrogenous compounds. The study also found that physical cleaning with deionized (DI) water effectively restored the water flux, with more than 97% recovered for the TS-PTFE membrane. Additionally, the TS-PTFE membrane showed better water flux and product quality at 55 °C and excellent stability in maintaining the contact angle over time compared to the PTFE membrane.

2.
J Fluoresc ; 33(3): 911-921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36520364

RESUMO

Detection of water in organic solvents gained much importance as these solvents have been used as a medium for conducting organic reactions and water was considered as an inhibitor, when it is present in the reaction medium. There are number of methods available to measure the water content in organic solvents, however, such methods are time consuming and expensive. Here, we developed a facile method for detecting water in organic solvents using an inexpensive fluorescent probe - Rhodamine B decorated Graphene oxide (RBGO). The fluorescent probe, RBGO can be conveniently prepared by mixing the rhodamine B (RB) with graphene oxide (GO) in water. However, the probe will function as a sensor for water in the organic solvents through the release of dye upon interaction with the water present in organic solvents. Surprisingly, combination of cucurbit[7]uril (CB[7]) and RBGO increased the sensitivity of this sensor dramatically for the detection of water. This is the first example of water sensor with best detection limit by the involvement of host molecules such as CB[7]. This sensor displayed the low limit of detection (LOD) for organic solvents (LOD: 0.0015% for DMSO, 0.0025% for DMF), through the two-way process such as decomplexation and encapsulation. We presume that the role of CB [7] can be implemented in other similar sensors to enhance the sensitivity.

3.
Membranes (Basel) ; 12(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363652

RESUMO

Forward osmosis (FO) has been identified as an emerging technology for the concentration and crystallization of aqueous solutions at low temperatures. However, the application of the FO process has been limited due to the unavailability of a suitable draw solute. An ideal draw solute should be able to generate high osmotic pressure and must be easily regenerated with less reverse solute flux (RSF). Recently, hydrogels have attracted attention as a draw solution due to their high capacity to absorb water and low RSF. This study explores a poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) (PVA-polyDADMAC) polymeric network hydrogel as a draw solute in forward osmosis. A low-pressure reverse osmosis (RO) membrane was used in the FO process to study the performance of the hydrogel prepared in this study as a draw solution. The robust and straightforward gel synthesis method provides an extensive-scale application. The results indicate that incorporating cationic polyelectrolyte poly (diallyldimethylammonium chloride) into the polymeric network increases swelling capacity and osmotic pressure, thereby resulting in an average water flux of the PVA-polyDADMAC hydrogel (0.97 L m−2 h−1) that was 7.47 times higher than the PVA hydrogel during a 6 h FO process against a 5000 mg L−1 NaCl solution (as a feed solution). The effect of polymer and cross-linker composition on swelling capacity was studied to optimize the synthesized hydrogel composition. At 50 °C, the hydrogel releases nearly >70% of the water absorbed during the FO process at room temperatures, and water flux can be recovered by up to 86.6% of the initial flux after 12 hydrogel (draw solute) regenerations. Furthermore, this study suggests that incorporating cationic polyelectrolytes into the polymeric network enhances FO performances and lowers the actual energy requirements for (draw solute) regeneration. This study represents a significant step toward the commercial implementation of a hydrogel-driven FO system for the concentration of liquid-food extract.

4.
Membranes (Basel) ; 12(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295710

RESUMO

This study reports on the impact of elevated recovery (i.e., 80%, 85%, and 90%) on the fouling and performance of air gap membrane distillation (AGMD) with real seawater and landfill leachate wastewater samples using polytetrafluoroethylene (PTFE) polymer membranes. Increasing the feed temperature from 55 °C to 65 °C improved the water flux of seawater and wastewater and shortened the operating time by 42.8% for all recoveries. The average water flux in the 80%, 85%, and 90% recovery experiments at the 65 °C feed temperature was 32%, 37.32%, and 36.7% higher than the case of 55 °C for the same recoveries. The water flux decline was more severe at a higher temperature and recovery. The highest flux decline was observed with a 90% recovery at 65 °C feed temperature, followed by an 85% recovery at 65 °C. Close examination of the foulants layer revealed that seawater formed a cake fouling layer made predominantly of metal oxides. In contrast, the landfill leachate fouling was a combination of pore blocking and cake formation, consisting mainly of carbonous and nitrogenous compounds. Physical cleaning with deionized (DI) water at 55 °C and 65 °C and chemical cleaning with hydrogen peroxide (H2O2) were investigated for their efficiency in removing membrane foulants. Analytical results revealed that seawater fouling caused membrane pore blockage while wastewater fouling formed a porous layer on the membrane surface. The results showed that membrane cleaning with hydrogen peroxide restored >97% of the water flux. Interestingly, the fouling factor in seawater tests was 10%, while it was 16% for the wastewater tests.

5.
Chemosphere ; 308(Pt 2): 136237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36049636

RESUMO

Membrane cleaning is critical for economic and scientific reasons in wastewater treatment systems. Sodium docusate is a laxative agent and removes cerumen (ear wax). Docusate penetrates the hard ear wax, making it softer and easier to remove. The same concept could be applied to soften and remove fouling layers on the membrane surface. Once softened, the foulants can be easily flushed with water. This innovative approach can address the challenge of developing superior methods to mitigate membrane fouling and material degradation. In this study, we evaluated the efficiency of sodium docusate for cleaning fouled forward osmosis membranes with real landfill leachate wastewater. Experiments were conducted to examine the impact of dose rate, contact time, flow or static conditions, and process configuration (forward osmosis (FO) or pressure retarded osmosis (PRO) upon fouling created by landfill leachate dewatering. A remarkable (99%) flux recovery was achieved using docusate at a small concentration of only 0.1% for 30 min. Furthermore, docusate can also effectively restore flux with static cleaning without using pumps to circulate the cleaning solution. Furthermore, cleaning efficiency can be achieved at neutral pH compatible with most membrane materials. From an economic and energy-saving perspective, static cleaning can almost achieve the same cleaning efficiency as kinetic cleaning for fouled forward osmosis membranes without the expense of additional pumping energy compared to kinetic cleaning. Since pumping energy is a major contributor to the overall energy of the forward osmosis system, it can be minimized to a certain degree by using a static cleaning approach and can bring good energy savings when using larger membrane areas. Studies of the contact angle on the membrane surface indicated that the contact angle was decreased compared to the fouled membrane after cleaning (e.g. 70.3° to 63.2° or FO mode and static cleaning). Scanning Electron Microscopy revealed that the cleaning strategy was successful. Infrared Spectroscopy showed that a small amount of sodium docusate remained on the membrane surface. Docusate is more environmentally friendly than acid or alkaline solutions from an environmental perspective. Furthermore, the cleaning solution can be reused for several cycles without discarding it due to the surfactant properties of docusate.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ácido Dioctil Sulfossuccínico , Laxantes , Membranas Artificiais , Osmose , Sódio , Tensoativos , Águas Residuárias/química , Água
6.
Water Res ; 220: 118666, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709596

RESUMO

Monitoring of water distribution network (WDN) requires placement of sensors at strategic locations to detect maximum contamination events at the earliest. The multi-objective optimization (MOO) of sensor placement is a complicated problem owing to its combinatorial nature, interconnected and large WDN sizes, and temporal flows producing complex outcomes for a given set of contamination events. In this study, a new method is proposed to reduce the complexity of the problem by condensing the nodal search space. This method first segregates the nodes based on intrusion events detected, using k-means clustering, followed by selecting nodes from each group based on the improvement observed in the objectives, namely, contamination event detection, expected detection time, and affected population. The selected nodes formed the decision variable space for the MOO study. The developed strategy was tested on two benchmark networks: BWSN Network1 and C-town network, and its performance is compared with the traditional method in terms of hypervolume contribution rate (CR) indicator and the number of Pareto points. The optimal subset of nodes generated twice the number of Pareto points than the complete set of nodes set for placing 20 sensors and had 10% more than CR indicator than the traditional method. For the placement of 5 sensors, the proposed solutions were better at the higher detection likelihood values, which is required to achieve maximum detection. The proposed sensor placement algorithm can be easily scaled to large WDNs. It is expected to provide a better optimal sensor placement solution irrespective of network size as compared to the traditional approach.


Assuntos
Abastecimento de Água , Água , Algoritmos , Análise por Conglomerados , Qualidade da Água
7.
Biotechnol Bioeng ; 119(3): 922-935, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964125

RESUMO

Real-time estimation of physiological properties of the cell during recombinant protein production would ensure enhanced process monitoring. In this study, we explored the application of dielectric spectroscopy to track the fed-batch phase of recombinant Escherichia coli cultivation for estimating the physiological properties, namely, cell diameter and viable cell concentration (VCC). The scanning capacitance data from the dielectric spectroscopy were pre-processed using moving average. Later, it was modeled through a nonlinear theoretical Cole-Cole model and further solved using a global evolutionary genetic algorithm (GA). The parameters obtained from the GA were further applied for the estimation of the aforementioned physiological properties. The offline cell diameter and cell viability data were obtained from particle size analyzer and flow cytometry measurements to validate the Cole-Cole model. The offline VCC was calculated from the cell viability % from flow cytometry data and dry cell weight concentration. The Cole-Cole model predicted the cell diameter and VCC with an error of 1.03% and 7.72%, respectively. The proposed approach can enable the operator to take real-time process decisions to achieve desired productivity and product quality.


Assuntos
Espectroscopia Dielétrica , Escherichia coli , Sobrevivência Celular , Espectroscopia Dielétrica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Teóricos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Mar Pollut Bull ; 169: 112550, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091249

RESUMO

The presence of microplastic particles from five different beach locations (Arabian Sea coast) in the Indian state of Karnataka was assessed. The sieving and density separation method was modified to enhance the yield of microplastics. Three different techniques were used to characterize isolated microplastics, such as optical fluorescence microscopy, Raman spectroscopy, and FESEM-EDX. Microplastic concentrations ranged from 264 ± 62 n/kg to 1002 ± 174 n/kg of dry sand in beach sediments, and the average abundance of the five beaches was 664 ± 114 n/kg. The majority of the microplastics were fragmented, <1 mm in size, white and transparent in color. FESEM images of microplastics show the roughness, cracks, mechanical and oxidative weathering, indicating their continuous exposure in the environment. EDX spectra provide the presence of various elements on the microplastic surface.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Plásticos , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
9.
Environ Res ; 188: 109825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798946

RESUMO

Adsorptive removal of emerging contaminants like antibiotics from aqueous systems having one or more antibiotics using acid activated carbon have rarely been studied and reported. Current study deals with the adsorptive removal of individual antibiotic species i.e. Ciprofloxacin (CIP) and Amoxicillin (AMX) from single (CIP and AMX) and binary (CIP + AMX) adsorption systems using acid activated carbon prepared from Prosopis juliflora wood (PPJ). Binary adsorption system involved the synergistic and antagonistic influence of one antibiotic over the adsorption of other antibiotic. Physico-chemical alterations of PPJ surface due to acid activation and after adsorption were characterized for any surface modification. Parameters influencing the efficient adsorption of CIP and AMX viz. Initial pH of antibiotic solution, dosage of PPJ, sorbent-sorbate incubation temperature and initial concentration of antibiotic species were optimized. Sorbate-sorbent interaction studies for single system revealed sorbate's monolayer formation over adsorbent's surface and the involvement of chemisorption as verified by Langmuir isotherm model and pseudo-second order model respectively. For single system, Langmuir maximum adsorption capacity of PPJ was 250 mg/g for CIP and 714.29 mg/g for AMX. Meanwhile, competitive Langmuir model was used to investigate adsorption capacity of individual antibiotics in binary system i.e. 370.37 mg/g for CIP and 482.14 mg/g for AMX thus verifying CIP has antagonistic effect on AMX adsorption and AMX has synergistic effect on CIP adsorption on PPJ surface. Recyclability studies verified the PPJ can be used up to 4 cycles and co-existing cationic and anionic salts had minimal effect on the adsorption of antibiotics over PPJ surface. Conclusively PPJ proved efficient in eliminating emerging contaminants like that of antibiotics and thus it can be exploited for other grades of pollutants.


Assuntos
Prosopis , Poluentes Químicos da Água , Adsorção , Amoxicilina , Carvão Vegetal , Ciprofloxacina , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 27(13): 14836-14851, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32060825

RESUMO

Current study deals with the comparative assessment for efficient adsorption of Cr(VI) from simulated wastewater using raw (NPP), phosphoric acid-activated (PPP) and sulphuric acid-activated (SPP) Pongamia pinnata shells. Physico-chemical alterations of the adsorbent were characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta-potential analysis, energy-dispersive X-ray spectroscopy (EDS) and total pore analysis using Brunauer-Emmett-Teller (BET). Parameters influencing the efficient biosorption of Cr(VI) species viz. initial pH of Cr(VI) solution, dosage of biosorbent, biosorbent-Cr(VI) contact period, initial concentration of Cr(VI) ions and reaction temperature were optimised. Various two-parameter and three-parameter isotherm models, kinetic models and thermodynamic studies were performed using equilibrium data. Langmuir adsorption capacity for NPP (raw biomass), PPP (phosphoric acid-activated biomass) and SPP (sulphuric acid-activated biomass) was found to be 96.2, 152 and 192 mg/g, respectively. All the biosorbents gave best fit for pseudo-second-order model. Thermodynamic studies suggest spontaneous and endothermic interaction with increased degree of randomness. Effect of co-existing cations and anions on Cr(VI) biosorption onto the biosorbents implied that minimal competition and the biosorption capacity of the biosorbents for Cr(VI) species remained unaffected. Regeneration studies suggest that activated biosorbents can be used up to three times with continuous desorption.


Assuntos
Millettia , Poluentes Químicos da Água/análise , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Águas Residuárias
11.
Environ Sci Pollut Res Int ; 26(31): 32137-32150, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494856

RESUMO

A novel biosorbent Phanera vahlii fruit biomass (PVF) and its biochar and chemically modified forms were studied for the elimination of Cr(VI) from synthetic solutions. Biosorbents were characterized through BET, FTIR, FESEM, EDX, and TGA technique. The parameters influencing biosorption were optimized and found as pH 2.0, temperature 303 K, initial metal concentration 500 mg/L, and biosorbent dosage 0.5 g/L. The ideal contact time was 180 min for all biosorbents. Freundlich isotherm was found to have good correlation with investigational data, which indicated that biosorption takes place in multiple layer style. Langmuir adsorption isotherm yielded the highest biosorption capacity (Qo) to be 159.1, 225.1, 244.1, and 278.5 mg/g for Phanera vahlii fruit biomass, Phanera vahlii biochar, Phanera vahlii phosphoric acid activated carbon, and Phanera vahlii zinc chloride activated carbon, respectively. Experimental data had good correlation with pseudo-second-order kinetic model fitted. Thermodynamic studies indicated the biosorption process to be spontaneous, stable, and endothermic. Thus, it was concluded that Phanera vahlii fruit biomass and the derived activated carbons are promising biosorbents for adsorption of chromium from aqueous solutions. Graphical abstract.


Assuntos
Carvão Vegetal/análise , Cromo/análise , Frutas/química , Ácidos Fosfóricos/química , Adsorção , Biomassa , Cinética , Temperatura , Termodinâmica , Água
12.
Chemosphere ; 237: 124462, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31394446

RESUMO

Particulate matter and volatile organic compounds have emerged as a prime environmental concern with increasing air pollution in metropolitan cities leading to lung and heart-related issues. This paper describes a facile and novel method for fabrication of polyester based air filter via surface coating with Sericin for imparting effective removal of particulate matter and volatile organic compounds. A simple dip-coating method followed by thermal fixation has been adopted to coat Sericin on the polyester fiber. The developed changes in surface functionality and morphology of the polyester fiber were confirmed by Attenuated total reflection Fourier-transform infrared spectroscopy and Field emission scanning electron microscopy analysis. The fabricated air filter was tested for removal of particulate matter (generated burning incense stick) and volatile organic compounds (generated vaporizing gasoline), in an indoor chamber. The Sericin coated filter was able to remove the PM2.5 and PM 10 (from 1000 µg/m3 level to 5 µg/m3 in a 6.28 m3 chamber) within 27 and 23 min of operation, respectively. The fabricated filter very effectively removed particulate matter for 2160 cycles with intermittent washing. The Sericin-coated air filter also proved very effective for removal of volatile organic compounds (Benzene, Toluene, Ethylbenzene and Xylene) from an indoor chamber at a varying initial concentration of 100-1000 µg/m3. The adsorption behavior was described by Langmuir-Freundlich (sips) isotherm and pseudo-first order kinetics with minimal error. The maximum adsorption capacity (mg/g) obtained with Sips Isotherm fitting followed the order Xylene (6.97)>Ethyl Benzene (5.68)> Toluene (5.35) >Benzene (4.78).


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Material Particulado/isolamento & purificação , Sericinas/química , Compostos Orgânicos Voláteis/isolamento & purificação , Adsorção , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/isolamento & purificação , Benzeno/análise , Benzeno/isolamento & purificação , Derivados de Benzeno/isolamento & purificação , Gasolina/análise , Microscopia Eletrônica de Varredura , Material Particulado/análise , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Xilenos/análise , Xilenos/isolamento & purificação
13.
Bioresour Technol ; 264: 66-77, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29787883

RESUMO

This work studied the optimal conditions for pyrolysis of Prosopis juliflora wood in fixed-bed tubular reactor. The optimal conditions are measured by performing pyrolysis experiment with respect to wood properties such as particle size, moisture and pyrolysis condition such as, temperatures, heating rates. Higher solid yield (36.8%) was recorded for a slower heating rate of larger particle size at lower temperatures. Further, higher liquid yield (38.3%) was observed while maintaining high heating rate and temperature. It is observed that with increase in particle size, the yield of char and gas decreases and bio-oil increases. The literature reported biomass pyrolysis kinetic model is validated for Prosopis juliflora wood. The kinetic models are able to predict the performance of fixed-bed tubular reactor in terms of pyrolysis product properties. The validated kinetic model may be used for the design of commercial fixed bed pyrolysis reactor to process Prosopis juliflora wood.


Assuntos
Reatores Biológicos , Prosopis , Biomassa , Calefação , Temperatura Alta , Temperatura , Madeira
14.
Bioresour Technol ; 233: 413-422, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28327455

RESUMO

This paper deals with the pyrolysis of Prosopis juliflora fuelwood using thermogravimetric analysis to determine the kinetic parameters at six different heating rates of 2, 5, 10, 15, 20 and 25°C/min. The activation energy of pyrolysis was calculated using different methods, namely Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and Friedman model and corresponding calculated activation energy were found to be 164.6, 204, 203.2, and 219.3kJ/mol, respectively for each method. The three-pseudo component model was applied to calculate the following three kinetic parameters: activation energy, pre-exponential factor and order of reaction. The experimental results were validated with model prediction for all the six heating rates. The three-pseudo component model is able to predict experimental results much accurately while considering variable order reaction model (n≠1).


Assuntos
Prosopis , Termogravimetria , Biomassa , Calefação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA