Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 39(5): 1535-1546, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32085695

RESUMO

Biophysical interaction of amphiphilic fluorescent surfactant-ruthenium(II) complexes and its precursor ruthenium(II) complexes with drug carrying proteins such as bovine and human serum albumins (BSA and HSA) have been studied through the UV-visible absorption, fluorescence and circular dichroism spectroscopic techniques to correlate the impact of head and tail groups of the metallosurfactants towards the designing of metallodrugs for the biomedical applications. The obtained results showed that both precursor- and surfactant-ruthenium(II) complexes interact with BSA/HSA via ground state protein-complex formation and their quenching follows the static mechanism. The extent of protein quenching and binding parameters resulted that the surfactant-ruthenium(II) complexes effectively interact with protein compared to their precursor-ruthenium(II) complexes, and also those interaction have greatly influenced by the change in the head group size compared to change in the tail group length. Interestingly on increasing the temperature, the protein-complex binding strength was decreased for the precursor-ruthenium(II) complexes, those increased for the surfactant-ruthenium(II) complexes, probably due to the respective involvement of electrostatic and hydrophobic interactions as supported by the thermodynamics of protein-complex interaction. Moreover, the results from UV-visible, synchronous and circular dichroism studies confirmed the occurrence of conformational and micro environmental changes in BSA/HSA upon binding with these complexes. It is also noted that HSA has more binding affinity with surfactant-ruthenium(II) complexes compared to BSA. The free radical scavenging ability against DPPH, ABTS, NO and superoxide free radical assays suggested that surfactant-ruthenium(II) complexes have better free radical scavenging ability compared to precursor-ruthenium(II) complexes.Communicated by Ramaswamy H. Sarma.


Assuntos
Rutênio , Animais , Antioxidantes , Sítios de Ligação , Bovinos , Dicroísmo Circular , Humanos , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Tensoativos , Termodinâmica
2.
J Biomol Struct Dyn ; 39(6): 2242-2256, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32216611

RESUMO

Designing the effective metallodrugs with amphiphilic nature is an active approach for the biomedical applications such as chemotheraphy, bioimaging, drug carrier, etc. To elaborate this, some fluorescent emissive surfactant-ruthenium(II) complexes and its precursor ruthenium(II) complexes have been interacted with calf thymus DNA (CT-DNA) for understanding the biophysical impacts of head and tail parts of the metallosurfactants. Here, DNA binding studies were examined by UV-visible absorption, fluorescence, circular dichroism and viscosity measurements. The obtained results showed that surfactant-ruthenium(II) complexes effectively bind with CT-DNA through hydrophobic interactions dominated moderate intercalation, whereas precursor ruthenium(II) complexes interact CT-DNA through electrostatic interactions dominated moderate intercalation. Also, increase of hydrophobic alkyl amine chain length as well as size of the head group in surfactant-ruthenium(II) complexes increased the binding affinity with CT-DNA, in which tail group played a dominant role. Further investigations of antibacterial, hemolytic and anticancer activities showed that desired biological activities could be obtained by tuning the head and tail groups of the metallodrugs in near future.Communicated by Ramaswamy H. Sarma.


Assuntos
Complexos de Coordenação , Rutênio , Antibacterianos , Dicroísmo Circular , Complexos de Coordenação/farmacologia , DNA , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA