Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 102(4): e03299, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566362

RESUMO

Understanding the consequences of altered rainfall patterns on litter decomposition is critical to predicting the feedback effect of climate change on atmospheric CO2 concentrations. Although their effect on microbial decomposition has received considerable attention, their effect on litter fragmentation by detritivores, the other dominant decomposition pathway, remains largely unexplored. Particularly, it remains unclear how different detritivore species and their interactions respond to changes in rainfall quantity and frequency. To fill this knowledge gap, we determined the contribution to litter decomposition of two detritivore species (millipede and isopod), separately and in combination, under contrasting rainfall quantity and frequency in a temperate forest. Although halving rainfall quantity and frequency decreased topsoil moisture by 7.8 and 13.1%, respectively, neither millipede- nor isopod-driven decomposition were affected by these changes. In contrast, decomposition driven by both detritivore species in combination was 65.5% higher than expected based on monospecific treatments under high rainfall quantity, but unchanged or even lower under low rainfall quantity. This indicates that although detritivore activity is relatively insensitive to changes in rainfall patterns, large synergistic interactions between detritivore species may disappear under future rainfall patterns. Incorporating interspecific interactions between decomposers thus seems critical to evaluate the sensitivity of decomposition to altered rainfall patterns.


Assuntos
Artrópodes , Ecossistema , Animais , Mudança Climática , Florestas , Folhas de Planta , Solo
2.
Commun Biol ; 3(1): 660, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177652

RESUMO

Litter-feeding soil animals are notoriously neglected in conceptual and mechanistic biogeochemical models. Yet, they may be a dominant factor in decomposition by converting large amounts of plant litter into faeces. Here, we assess how the chemical and physical changes occurring when litter is converted into faeces alter their fate during further decomposition with an experimental test including 36 combinations of phylogenetically distant detritivores and leaf litter of contrasting physicochemical characteristics. We show that, across litter and detritivore species, litter conversion into detritivore faeces enhanced organic matter lability and thereby accelerated carbon cycling. Notably, the positive conversion effect on faeces quality and decomposition increased with decreasing quality and decomposition of intact litter. This general pattern was consistent across detritivores as different as snails and woodlice, and reduced differences in quality and decomposition amongst litter species. Our data show that litter conversion into detritivore faeces has far-reaching consequences for the understanding and modelling of the terrestrial carbon cycle.


Assuntos
Ciclo do Carbono/fisiologia , Fezes/química , Folhas de Planta/metabolismo , Solo/química , Animais , Artrópodes/fisiologia , Comportamento Alimentar/fisiologia , Gastrópodes/fisiologia , Modelos Biológicos
3.
Glob Chang Biol ; 26(9): 5178-5188, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32662196

RESUMO

Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.


Assuntos
Sequestro de Carbono , Árvores , Carbono/análise , Ecossistema , Escócia , Solo
4.
New Phytol ; 227(6): 1818-1830, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32248524

RESUMO

In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.


Assuntos
Ecossistema , Solo , Regiões Árticas , Dióxido de Carbono , Rizosfera , Suécia
5.
Ecology ; 99(10): 2284-2294, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981157

RESUMO

Decomposition of plant litter is a key control over carbon (C) storage in the soil. The biochemistry of the litter being produced, the environment in which the decomposition is taking place, and the community composition and metabolism of the decomposer organisms exert a combined influence over decomposition rates. As deciduous shrubs and trees are expanding into tundra ecosystems as a result of regional climate warming, this change in vegetation represents a change in litter input to tundra soils and a change in the environment in which litter decomposes. To test the importance of litter biochemistry and environment in determining litter mass loss, we reciprocally transplanted litter between heath (Empetrum nigrum), shrub (Betula nana), and forest (Betula pubescens) at a sub-Arctic treeline in Sweden. As expansion of shrubs and trees promotes deeper snow, we also used a snow fence experiment in a tundra heath environment to understand the importance of snow depth, relative to other factors, in the decomposition of litter. Our results show that B. pubescens and B. nana leaf litter decomposed at faster rates than E. nigrum litter across all environments, while all litter species decomposed at faster rates in the forest and shrub environments than in the tundra heath. The effect of increased snow on decomposition was minimal, leading us to conclude that microbial activity over summer in the productive forest and shrub vegetation is driving increased mass loss compared to the heath. Using B. pubescens and E. nigrum litter, we demonstrate that degradation of carbohydrate-C is a significant driver of mass loss in the forest. This pathway was less prominent in the heath, which is consistent with observations that tundra soils typically have high concentrations of "labile" C. This experiment suggests that further expansion of shrubs and trees may stimulate the loss of undecomposed carbohydrate C in the tundra.


Assuntos
Ecossistema , Tundra , Regiões Árticas , Solo/química , Suécia
6.
Ecosystems ; 20(2): 316-330, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32226280

RESUMO

Sub-arctic birch forests (Betula pubescens Ehrh. ssp. czerepanovii) periodically suffer large-scale defoliation events caused by the caterpillars of the geometrid moths Epirrita autumnata and Operophtera brumata. Despite their obvious influence on ecosystem primary productivity, little is known about how the associated reduction in belowground C allocation affects soil processes. We quantified the soil response following a natural defoliation event in sub-arctic Sweden by measuring soil respiration, nitrogen availability and ectomycorrhizal fungi (EMF) hyphal production and root tip community composition. There was a reduction in soil respiration and an accumulation of soil inorganic N in defoliated plots, symptomatic of a slowdown of soil processes. This coincided with a reduction of EMF hyphal production and a shift in the EMF community to lower autotrophic C-demanding lineages (for example, /russula-lactarius). We show that microbial and nutrient cycling processes shift to a slower, less C-demanding state in response to canopy defoliation. We speculate that, amongst other factors, a reduction in the potential of EMF biomass to immobilise excess mineral nitrogen resulted in its build-up in the soil. These defoliation events are becoming more geographically widespread with climate warming, and could result in a fundamental shift in sub-arctic ecosystem processes and properties. EMF fungi may be important in mediating the response of soil cycles to defoliation and their role merits further investigation.

7.
Biogeochemistry ; 130(3): 191-213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-32355382

RESUMO

Climate change poses a substantial threat to the stability of the Arctic terrestrial carbon (C) pool as warmer air temperatures thaw permafrost and deepen the seasonally-thawed active layer of soils and sediments. Enhanced water flow through this layer may accelerate the transport of C and major cations and anions to streams and lakes. These act as important conduits and reactors for dissolved C within the terrestrial C cycle. It is important for studies to consider these processes in small headwater catchments, which have been identified as hotspots of rapid mineralisation of C sourced from ancient permafrost thaw. In order to better understand the role of inland waters in terrestrial C cycling we characterised the biogeochemistry of the freshwater systems in a c. 14 km2 study area in the western Canadian Arctic. Sampling took place during the snow-free seasons of 2013 and 2014 for major inorganic solutes, dissolved organic and inorganic C (DOC and DIC, respectively), carbon dioxide (CO2) and methane (CH4) concentrations from three water type groups: lakes, polygonal pools and streams. These groups displayed differing biogeochemical signatures, indicative of contrasting biogeochemical controls. However, none of the groups showed strong signals of enhanced permafrost thaw during the study seasons. The mean annual air temperature in the region has increased by more than 2.5 °C since 1970, and continued warming will likely affect the aquatic biogeochemistry. This study provides important baseline data for comparison with future studies in a warming Arctic.

8.
Glob Chang Biol ; 21(5): 2070-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25367088

RESUMO

Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.


Assuntos
Ciclo do Carbono/fisiologia , Carbono/análise , Mudança Climática , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Tundra , Betula/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Ericaceae/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Suécia
9.
Nature ; 513(7516): 81-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25186902

RESUMO

Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.


Assuntos
Dióxido de Carbono/metabolismo , Retroalimentação , Oxigênio/metabolismo , Microbiologia do Solo , Temperatura , Regiões Árticas , Carbono/metabolismo , Clima Frio , Aquecimento Global , Nitrogênio/metabolismo , Solo/química , Clima Tropical
10.
New Phytol ; 199(2): 339-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23943914

RESUMO

Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration.


Assuntos
Raízes de Plantas/fisiologia , Rizosfera , Respiração Celular/efeitos dos fármacos , Marcação por Isótopo , Nitrogênio/farmacologia , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos
11.
New Phytol ; 199(1): 163-175, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23614757

RESUMO

The Arctic is already experiencing changes in plant community composition, so understanding the contribution of different vegetation components to carbon (C) cycling is essential in order to accurately quantify ecosystem C balance. Mosses contribute substantially to biomass, but their impact on carbon use efficiency (CUE) - the proportion of gross primary productivity (GPP) incorporated into growth - and aboveground versus belowground C partitioning is poorly known. We used (13) C pulse-labelling to trace assimilated C in mosses (Sphagnum sect. Acutifolia and Pleurozium schreberi) and in dwarf shrub-P. schreberi vegetation in sub-Arctic Finland. Based on (13) C pools and fluxes, we quantified the contribution of mosses to GPP, CUE and partitioning. Mosses incorporated 20 ± 9% of total ecosystem GPP into biomass. CUE of Sphagnum was 68-71%, that of P. schreberi was 62-81% and that of dwarf shrub-P. schreberi vegetation was 58-74%. Incorporation of C belowground was 10 ± 2% of GPP, while vascular plants alone incorporated 15 ± 4% of their fixed C belowground. We have demonstrated that mosses strongly influence C uptake and retention in Arctic dwarf shrub vegetation. They increase CUE, and the fraction of GPP partitioned aboveground. Arctic C models must include mosses to accurately represent ecosystem C dynamics.


Assuntos
Briófitas/metabolismo , Carbono/metabolismo , Regiões Árticas , Biomassa , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Ecossistema , Finlândia , Modelos Biológicos
12.
Plant Cell Environ ; 35(8): 1518-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22428947

RESUMO

Plants can alter rates of electron transport through the alternative oxidase (AOX) pathway in response to environmental cues, thus modulating respiratory efficiency, but the (18)O discrimination method necessary for measuring electron partitioning in vivo has been restricted to laboratory settings. To overcome this limitation, we developed a field-compatible analytical method. Series of plant tissue subsamples were incubated in 12 mL septum-capped vials for 0.5-4 h before aliquots of incubation air were injected into 3.7 mL evacuated storage vials. Vials were stored for up to 10 months before analysis by mass spectrometry. Measurements were corrected for unavoidable contamination. Additional mathematical tools were developed for detecting and addressing non-linearity (whether intrinsic or due to contamination) in the data used to estimate discrimination values. Initial contamination in the storage vials was 0.03 ± 0.01 atm; storing the gas samples at -17 °C eliminated further contamination effects over 10 months. Discrimination values obtained using our offline incubation and computation method replicated previously reported results over a range of 10-31‰, with precision generally better than ±0.5‰. Our method enables large-scale investigations of plant alternative respiration along natural environmental gradients under field conditions.


Assuntos
Isótopos de Oxigênio/metabolismo , Respiração , Transporte de Elétrons
14.
Soil Biol Biochem ; 42(9): 1653-1656, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21633517

RESUMO

The temperature dependence of soil respiration (R(S)) is widely used as a key characteristic of soils or organic matter fractions within soils, and in the context of global climatic change is often applied to infer likely responses of R(S) to warmer future conditions. However, the way in which these temperature dependencies are calculated, interpreted and implemented in ecosystem models requires careful consideration of possible artefacts and assumptions. We argue that more conceptual clarity in the reported relationships is needed to obtain meaningful meta-analyses and better constrained parameters informing ecosystem models. Our critical assessment of common methodologies shows that it is impossible to measure actual temperature response of R(S), and that a range of confounding effects creates the observed apparent temperature relations reported in the literature. Thus, any measureable temperature response function will likely fail to predict effects of climate change on R(s). For improving our understanding of R(S) in changing environments we need a better integration of the relationships between substrate supply and the soil biota, and of their long-term responses to changes in abiotic soil conditions. This is best achieved by experiments combining isotopic techniques and ecosystem manipulations, which allow a disentangling of abiotic and biotic factors underlying the temperature response of soil CO(2) efflux.

15.
New Phytol ; 183(2): 349-357, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19496953

RESUMO

Physical diffusion of isotopic tracers into and out of soil pores causes considerable uncertainty for the timing and magnitude of plant belowground allocation in pulse-labelling experiments. Here, we partitioned soil CO(2) isotopic fluxes into abiotic tracer flux (physical return), heterotrophic flux, and autotrophic flux contributions following (13)CO(2) labelling of a Swedish Pinus sylvestris forest. Soil CO(2) efflux and its isotopic composition from a combination of deep and surface soil collars was monitored using a field-deployed mass spectrometer. Additionally, (13)CO(2) within the soil profile was monitored. Physical (abiotic) efflux of (13)CO(2) from soil pore spaces was found to be significant for up to 48 h after pulse labelling, and equalled the amount of biotic label flux over 6 d. Measured and modelled changes in (13)CO(2) concentration throughout the soil profile corroborated these results. Tracer return via soil CO(2) efflux correlated significantly with the proximity of collars to trees, while daily amplitudes of total flux (including heterotrophic and autotrophic sources) showed surprising time shifts compared with heterotrophic fluxes. The results show for the first time the significance of the confounding influence of physical isotopic CO(2)-tracer return from the soil matrix, calling for the inclusion of meaningful control treatments in future pulse-chase experiments.


Assuntos
Dióxido de Carbono/metabolismo , Pinus/metabolismo , Solo , Árvores/metabolismo , Biomassa , Isótopos de Carbono , Ritmo Circadiano , Temperatura , Fatores de Tempo
16.
Rapid Commun Mass Spectrom ; 23(7): 980-4, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19241413

RESUMO

Isotopically labelled ozone ((18)O(3)) is an ideal tool to study the deposition of O(3) to plants and soil, but no studies have made use of it due to the technical difficulties in producing isotopically enriched ozone. For (18)O(3) to be used in fumigation experiments, it has to be purified and stored safely prior to fumigations, to ensure that the label is present predominantly in the form of O(3), and to make efficient use of isotopically highly enriched oxygen. We present a simple apparatus that allows for the safe generation, purification, storage, and release of (18)O(3). Following the purification and release of O(3), about half (by volume) of the (18)O is present in the form of O(3). This means that for a given release of (18)O(3) into the fumigation system, a roughly identical volume of (18)O(2) is released. However, the small volume of this concurrent (18)O(2) release (100 nmol mol(-1) in our experiment) results in only a minor shift of the much larger atmospheric oxygen pool, with no detectable consequence for the isotopic enrichment of either soil or plant materials. We demonstrate here the feasibility of using (18)O as an isotopic tracer in O(3) fumigations by exposing dry soil to 100 nmol mol(-1) (18)O(3) for periods ranging from 1 to 11 h. The (18)O tracer accumulation in soil samples is measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the results show a linear increase in (18)O/(16)O isotope ratio over time, with significant differences detectable after 1 h of exposure. The apparatus is adapted for use with fumigation chambers sustaining flow rates of 1 m(3) min(-1) for up to 12 h, but simple modifications now allow larger quantities of O(3) to be stored and continuously released (e.g. for use with open-top chambers or FACE facilities).


Assuntos
Poluentes Atmosféricos/análise , Ozônio/metabolismo , Estudos de Viabilidade , Fumigação/métodos , Isótopos de Oxigênio , Ozônio/química , Plantas/metabolismo , Solo/análise
17.
New Phytol ; 182(1): 85-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19226316

RESUMO

* We show that the stable isotope (18)O can be used to trace ozone into different components of the plant-soil system at environmentally relevant concentrations. * We exposed plants and soils to (18)O-labelled ozone and used isotopic enrichment in plant dry matter, leaf water and leaf apoplast, as well as in soil dry matter and soil water, to identify sites of ozone-derived (18)O accumulation. * It was shown that isotopic accumulation rates in plants can be used to infer the location of primary ozone-reaction sites, and that those in bare soils are dependent on water content. However, the isotopic accumulation rates measured in leaf tissue were much lower than the modelled stomatal flux of ozone. * Our new approach has considerable potential to elucidate the fate and reactions of ozone within both plants and soils, at scales ranging from plant communities to cellular defence mechanisms.


Assuntos
Marcação por Isótopo/métodos , Ozônio/metabolismo , Solo , Trifolium/metabolismo , Fumigação , Isótopos de Oxigênio , Folhas de Planta/metabolismo , Água/metabolismo
18.
Isotopes Environ Health Stud ; 42(1): 57-65, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16500755

RESUMO

A new system for soil respiration measurement [P. Rochette, L.B. Flanagan, E.G. Gregorich. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J., 63, 1207-1213 (1999).] was modified in order to collect soil-derived CO2 for stable isotope analysis. The aim of this study was to assess the suitability of this modified soil respiration system to determine the isotopic composition (delta13C) of soil CO2 efflux and to measure, at the same time, the soil CO2 efflux rate, with the further advantage of collecting only one air sample. A comparison between different methods of air collection from the soil was carried out in a laboratory experiment. Our system, as well as the other dynamic chamber approach tested, appeared to sample the soil CO2, which is enriched with respect to the soil CO2 efflux, probably because of a mass dependent fractionation during diffusion and because of the atmospheric contribution in the upper soil layer. On the contrary, the static accumulation of CO2 into the chamber headspace allows sampling of delta13C-CO2 of soil CO2 efflux.


Assuntos
Dióxido de Carbono/química , Isótopos de Carbono/química , Solo/análise , Espectrofotometria Infravermelho , Humanos , Reprodutibilidade dos Testes , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos
19.
Oecologia ; 139(4): 551-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15042460

RESUMO

The aim of our study was to identify interactions between the decomposition of aboveground litter and rhizosphere activity. The experimental approach combined the placement of labelled litter (delta13C=-37.9 per thousand ) with forest girdling in a 35-year-old Norway spruce stand, resulting in four different treatment combinations: GL (girdled, litter), GNL (girdled, no litter), NGL (not girdled, litter), and NGNL (not girdled, no litter). Monthly sampling of soil CO2 efflux and delta13C of soil respired CO2 between May and October 2002 allowed the partitioning of the flux into that derived from the labelled litter, and that derived from native soil organic matter and roots. The effect of forest girdling on soil CO2 efflux was detectable from June (girdling took place in April), and resulted in GNL fluxes to be about 50% of NGNL fluxes by late August. The presence of litter resulted in significantly increased fluxes for the first 2 months of the experiment, with significantly greater litter derived fluxes from non-girdled plots and a significant interaction between girdling and litter treatments over the same period. For NGL collars, the additional efflux was found to originate only in part from litter decomposition, but also from the decay of native soil organic matter. In GL collars, this priming effect was not significant, indicating an active role of the rhizosphere in soil priming. The results therefore indicate mutual positive feedbacks between litter decomposition and rhizosphere activity. Soil biological analysis (microbial and fungal biomass) of the organic layers indicated greatest activity below NGL collars, and we suppose that this increase indicates the mechanism of mutual positive feedback between rhizosphere activity and litter decomposition. However, elimination of fresh C input from both above- and belowground (GNL) also resulted in greater fungal abundance than for the NGNL treatment, indicating likely changes in fungal community structure (i.e. a shift from symbiotic to saprotrophic species abundance).


Assuntos
Ecossistema , Retroalimentação Fisiológica/fisiologia , Fungos/fisiologia , Picea/fisiologia , Folhas de Planta/química , Microbiologia do Solo , Solo/análise , Biomassa , Dióxido de Carbono/química , Isótopos de Carbono , Modelos Biológicos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA