Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Soc Mass Spectrom ; 34(10): 2296-2307, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729585

RESUMO

In the context of direct top-down analysis or concerted bottom-up characterization of nucleic acid samples, the waning yield of terminal fragments as a function of precursor ion size poses a significant challenge to the gas-phase sequencing of progressively larger oligonucleotides. In this report, we examined the behavior of oligoribonucleotide samples ranging from 20 to 364 nt upon collision-induced dissociation (CID). The experimental data showed a progressive shift from terminal to internal fragments as a function of size. The systematic evaluation of experimental factors, such as collision energy, precursor charge, sample temperature, and the presence of chaotropic agents, showed that this trend could be modestly alleviated but not suppressed. This inexorable effect, which has been reported also for other activation techniques, prompted a re-examination of the features that have traditionally discouraged the utilization of internal fragments as a source of sequence information in data interpretation procedures. Our simulations highlighted the ability of internal fragments to produce self-consistent ladders with either end corresponding to each nucleotide in the sequence, which enables both proper alignment and correct recognition of intervening nucleotides. In turn, contiguous ladders display extensive overlaps with one another and with the ladders formed by terminal fragments, which unambiguously constrain their mutual placement within the analyte sequence. The experimental data borne out the predictions by showing ladders with extensive overlaps, which translated into uninterrupted "walks" covering the entire sequence with no gaps from end to end. More significantly, the results showed that combining the information afforded by internal and terminal ladders resulted in much a greater sequence coverage and nucleotide coverage depth than those achievable when either type of information was considered separately. The examination of a series of 58-mer oligonucleotides with high sequence homology showed that the assignment ambiguities engendered by internal fragments did not significantly exceed those afforded by the terminal ones. Therefore, the balance between potential benefits and perils of including the former makes a compelling argument for the development of integrated data interpretation strategies, which are better equipped for dealing with the changing fragmentation patterns obtained from progressively larger oligonucleotides.

2.
J Am Soc Mass Spectrom ; 33(7): 1293-1302, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758524

RESUMO

Identification and sequence determination by mass spectrometry have become routine analyses for soluble proteins. Membrane proteins, however, remain challenging targets due to their hydrophobicity and poor annotation. In particular small membrane proteins often remain unnoticed as they are largely inaccessible to Bottom-Up proteomics. Recent advances in structural biology, though, have led to multiple membrane protein complex structures being determined at sufficiently high resolution to detect uncharacterized, small subunits. In this work we offer a guide for the mass spectrometric characterization of solvent extraction-based purifications of small membrane proteins isolated from protein complexes and cellular membranes. We first demonstrate our Top-Down MALDI-MS/MS approach on a Photosystem II preparation, analyzing target protein masses between 2.5 and 9 kDa with high accuracy and sensitivity. Then we apply our technique to purify and sequence the mycobacterial ATP synthase c subunit, the molecular target of the antibiotic drug bedaquiline. We show that our approach can be used to directly track and pinpoint single amino acid mutations that lead to antibiotic resistance in only 4 h. While not applicable as a high-throughput pipeline, our MALDI-MS/MS and ISD-based approach can identify and provide valuable sequence information on small membrane proteins, which are inaccessible to conventional Bottom-Up techniques. We show that our approach can be used to unambiguously identify single-point mutations leading to antibiotic resistance in mycobacteria.


Assuntos
Proteínas de Membrana , Espectrometria de Massas em Tandem , Proteômica/métodos , Análise de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
3.
Methods Mol Biol ; 2313: 207-217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34478140

RESUMO

Biopharmaceutical sequences can be well confirmed by multiple protease digests-e.g., trypsin, elastase, and chymotrypsin-followed by LC-MS/MS data analysis. High quality data can be used for de novo sequencing as well. PASEF (Parallel Accumulation and Serial Fragmentation) on the timsTOF instrument has been used to accelerate proteome and protein sequence studies and increase sequence coverage concomitantly.Here we describe the protein chemical and LC-MS methods in detail to generate high quality samples for sequence characterization from only 3 digests. We applied PASEF to generate exhaustive protein sequence coverage maps by combination of results from the three enzyme digests using a short LC gradient. The data quality obtained was high and adequate for determining antibody sequences de novo.Nivolumab and dulaglutide were digested by 3 enzymes individually. For nivolumab, 94/94/90% sequence coverage and 86/84/85% fragment coverage were obtained from the individual digest analysis with trypsin/chymotrypsin/elastase, respectively. For dulaglutide, 96/100/90% sequence coverage and 92/90/83% fragment coverage were obtained. The merged peptide map from the 3 digests for nivolumab resulted in ∼550 peptides; enough to safely confirm the full sequences and to determine the nivolumab sequence de novo.


Assuntos
Confiabilidade dos Dados , Cromatografia Líquida , Quimotripsina , Nivolumabe , Elastase Pancreática , Peptídeos , Proteoma , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Tripsina
4.
Anal Chem ; 93(17): 6839-6847, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33871970

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is still ongoing and dramatically influences our life, the need for recombinant viral proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor-binding domain (RBD), mediates the interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells and may be modulated by its structural features. Therefore, well-characterized recombinant RBDs are essential. We have performed an in-depth structural and functional characterization of RBDs expressed in Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells. To structurally characterize the native RBDs (comprising N- and O-glycans and additional post translational modifications), a multilevel mass spectrometric approach was employed. Released glycan and glycopeptide analysis were integrated with intact mass analysis, glycan-enzymatic dissection, and top-down sequencing for comprehensive annotation of RBD proteoforms. The data showed distinct glycosylation for CHO- and HEK293-RBD with the latter exhibiting antenna fucosylation, a higher level of sialylation, and a combination of core 1 and core 2 type O-glycans. Additionally, using an alternative approach based on N-terminal cleavage of the O-glycosylation, the previously unknown O-glycosylation site was localized at T323. For both RBDs, the binding to SARS-CoV-2 antibodies of positive patients and affinity to the ACE2 receptor was addressed showing comparable results. This work not only offers insights into RBD structural and functional features but also provides an analytical workflow for characterization of new RBDs and batch-to-batch comparison.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Anal Biochem ; 624: 114195, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857502

RESUMO

We coupled SPR imaging (SPRi) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) to identify new potential RNA binders. Here, we improve this powerful method, especially by optimizing the proteolytic digestion (type of reducing agent, its concentration, and incubation time), to work with complex mixtures, specifically a lysate of the rough mitochondrial fraction from yeast. The advantages of this hyphenated method compared to column-based or separate analyses are (i) rapid and direct visual readout from the SPRi array, (ii) possibility of high-throughput analysis of different interactions in parallel, (iii) high sensitivity, and (iv) no sample loss or contamination due to elution or micro-recovery procedures. The model system used is a catalytically active RNA (group IIB intron from Saccharomyces cerevisiae, Sc.ai5γ) and its cofactor Mss116. The protein supports the RNA folding process and thereby the subsequent excision of the intronic RNA from the coding part. Using the novel approach of coupling SPR with MALDI MS, we report the identification of potential RNA-binding proteins from a crude yeast mitochondrial lysate in a non-targeted approach. Our results show that proteins other than the well-known cofactor Mss116 interact with Sc.ai5γ (Dbp8, Prp8, Mrp13, and Cullin-3), suggesting that the intron folding and splicing are regulated by more than one cofactor in vivo.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ressonância de Plasmônio de Superfície/métodos , RNA Helicases DEAD-box/metabolismo , Mitocôndrias/metabolismo , Proteólise , RNA Catalítico , Saccharomyces cerevisiae/metabolismo
6.
Anal Chem ; 92(16): 10920-10924, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806900

RESUMO

Disulfide bonds within cysteine-rich peptides are important for their stability and biological function. In this respect, the correct disulfide connectivity plays a decisive role. The differentiation of individual disulfide-bonded isomers by traditional high-performance liquid chromatography (HPLC) and mass spectrometry (MS) is limited due to the similarity in physicochemical properties of the isomers sharing the same amino acid sequence. By using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), several 2- and 3-disulfide-bonded isomers of the µ-conotoxin PIIIA were investigated for their distinguishability by collision cross section (CCS) values and their characteristic mobilogram traces. The isomers could be differentiated by TIMS-MS and also identified in mixing experiments. Thus, TIMS-MS provides a highly valuable and enriching addition to standard HPLC and MS analysis of conformational isomers of disulfide-rich peptides and proteins.


Assuntos
Conotoxinas/análise , Dissulfetos/análise , Sequência de Aminoácidos , Cromatografia Líquida , Conotoxinas/química , Dissulfetos/química , Espectrometria de Mobilidade Iônica , Isomerismo , Espectrometria de Massas/métodos
7.
Anal Chem ; 92(11): 7453-7461, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32427467

RESUMO

Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.

8.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591262

RESUMO

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos , Biofarmácia/métodos , Anticorpos Monoclonais/metabolismo , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Laboratórios , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
9.
MAbs ; 10(8): 1200-1213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30277844

RESUMO

Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.


Assuntos
Dissulfetos/química , Imunoglobulina G/química , Peptídeos/química , Sequência de Aminoácidos , Dissulfetos/metabolismo , Humanos , Imunoglobulina G/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
10.
Data Brief ; 18: 1013-1021, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900270

RESUMO

Top-Down approaches have an extremely high biological relevance, especially when it comes to biomarker discovery, but the necessary pre-fractionation constraints are not easily compatible with the robustness requirements and the size of clinical sample cohorts. We have demonstrated that intact protein profiling studies could be run on UHR-Q-ToF with limited pre-fractionation (Schmit et al., 2017) [1]. The dataset presented herein is an extension of this research. Proteoforms known to play a role in the pathophysiology process of Alzheimer's disease were identified as candidate biomarkers. In this article, mass spectrometry performance of these candidates are demonstrated.

11.
Anal Chem ; 90(5): 3321-3327, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29397705

RESUMO

Peptides and proteins carrying high numbers of cysteines can adopt various 3D structures depending on their disulfide connectivities. The unambiguous verification of such conformational isomers with more than two disulfide bonds is extremely challenging, and experimental strategies for their unequivocal structural analysis are largely lacking. We synthesized all 15 possible isomers of the 22mer conopeptide µ-PIIIA and applied 2D NMR spectroscopy and MS/MS for the elucidation of its structure. This study provides intriguing insights in how the disulfide connectivity alters the global fold of a toxin. We also show that analysis procedures involving comprehensive combinations of conventional methods are required for the unambiguous assignment of disulfides in cysteine-rich peptides and proteins and that standard compounds are crucially needed for the structural analysis of such complex molecules.

12.
J Proteomics ; 175: 12-26, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28855124

RESUMO

Thanks to proteomics investigations, our vision of the role of different protein isoforms in the pathophysiology of diseases has largely evolved. The idea that protein biomarkers like tau, amyloid peptides, ApoE, cystatin, or neurogranin are represented in body fluids as single species is obviously over-simplified, as most proteins are present in different isoforms and subjected to numerous processing and post-translational modifications. Measuring the intact mass of proteins by MS has the advantage to provide information on the presence and relative amount of the different proteoforms. Such Top-Down approaches typically require a high degree of sample pre-fractionation to allow the MS system to deliver optimal performance in terms of dynamic range, mass accuracy and resolution. In clinical studies, however, the requirements for pre-analytical robustness and sample size large enough for statistical power restrict the routine use of a high degree of sample pre-fractionation. In this study, we have investigated the capacities of current-generation Ultra-High Resolution Q-Tof systems to deal with high complexity intact protein samples and have evaluated the approach on a cohort of patients suffering from neurodegenerative disease. Statistical analysis has shown that several proteoforms can be used to distinguish Alzheimer disease patients from patients suffering from other neurodegenerative disease. SIGNIFICANCE: Top-down approaches have an extremely high biological relevance, especially when it comes to biomarker discovery, but the necessary pre-fractionation constraints are not easily compatible with the robustness requirements and the size of clinical sample cohorts. We have demonstrated that intact protein profiling studies could be run on UHR-Q-ToF with limited pre-fractionation. The proteoforms that have been identified as candidate biomarkers in the-proof-of concept study are derived from proteins known to play a role in the pathophysiology process of Alzheimer disease.


Assuntos
Doença de Alzheimer/diagnóstico , Espectrometria de Massas/métodos , Proteômica/métodos , Fluxo de Trabalho , Biomarcadores/análise , Estudos de Coortes , Humanos , Doenças Neurodegenerativas/diagnóstico , Proteínas/análise , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Bioanal Chem ; 409(7): 1827-1836, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27987025

RESUMO

We report on the direct coupling of surface plasmon resonance imaging (SPRi) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the investigation of specific, non-covalent interactions, using the example of designed ankyrin repeat proteins (DARPins) and ribosomal protein S6 kinase 2 (RPS6KA2) directly from lysate of SH-SY5Y cells, derived from human bone marrow. Due to an array format, tracing of binding kinetics of numerous DARPins simultaneously and in real time becomes possible. By optimizing both the proteolytic digest directly on the SPRi chip (amount of trypsin, incubation time, and temperature) as well as the MALDI matrix application (concentration of matrix and number of spray cycles), we are able to identify the specific interaction with RPS6KA2 directly from the cell lysate at a surface coverage of only 0.8 fmol/mm2. Graphical Abstract Workflow of the direct coupling of SPRi with MALDI mass spectrometry.


Assuntos
Repetição de Anquirina , Fosfotransferases/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ressonância de Plasmônio de Superfície/métodos , Humanos , Proteólise
14.
Sci Rep ; 6: 20488, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26841683

RESUMO

Production of glycoconjugate vaccines involves the chemical conjugation of glycans to an immunogenic carrier protein such as Cross-Reactive-Material-197 (CRM197). Instead of using glycans from natural sources recent vaccine development has been focusing on the use of synthetically defined minimal epitopes. While the glycan is structurally defined, the attachment sites on the protein are not. Fully characterized conjugates and batch-to-batch comparisons are the key to eventually create completely defined conjugates. A variety of glycoconjugates consisting of CRM197 and synthetic oligosaccharide epitopes was characterised using mass spectrometry techniques. The primary structure was assessed by combining intact protein MALDI-TOF-MS, LC-MALDI-TOF-MS middle-down and LC-ESI-MS bottom-up approaches. The middle-down approach on CNBr cleaved glycopeptides provided almost complete sequence coverage, facilitating rapid batch-to-batch comparisons, resolving glycan loading and identification of side products. Regions close to the N- and C-termini were most efficiently conjugated.


Assuntos
Proteínas de Bactérias/química , Polissacarídeos/metabolismo , Vacinas Conjugadas/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromatografia Líquida , Epitopos/metabolismo , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vacinas Conjugadas/metabolismo
15.
MAbs ; 8(2): 318-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26760197

RESUMO

The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called "bottom-up" approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced - the "Sequence Validation Percentage." Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only -2 Da in the natalizumab Fd domain, were corrected as a result of this work.


Assuntos
Anticorpos Monoclonais/genética , Cetuximab/genética , Natalizumab/genética , Análise de Sequência de Proteína/métodos , Anticorpos Monoclonais/química , Cetuximab/química , Humanos , Natalizumab/química , Panitumumabe
16.
Anal Bioanal Chem ; 407(18): 5323-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25935672

RESUMO

Amyloidosis is a heterogeneous group of protein misfolding diseases characterized by deposition of amyloid proteins. The kidney is frequently affected, especially by immunoglobulin light chain (AL) and serum amyloid A (SAA) amyloidosis as the most common subgroups. Current diagnosis relies on histopathological examination, Congo red staining, or electron microscopy. Subtyping is done by immunohistochemistry; however, commercially available antibodies lack specificity. The purpose of this study was to identify and map amyloid proteins in formalin-fixed paraffin-embedded tissue sections using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in an integrated workflow. Renal amyloidosis and non-amyloidosis biopsies were processed for histological and MS analysis. Mass spectra corresponding to the congophilic areas were directly linked to the histological and MS images for correlation studies. Peptides for SAA and AL were detected by MALDI IMS associated to Congo red-positive areas. Sequence determination of amyloid peptides by LC-MS/MS analysis provided protein distribution and identification. Serum amyloid P component, apolipoprotein E, and vitronectin proteins were identified in both AA and AL amyloidosis, showing a strong correlation with Congo red-positive regions. Our findings highlight the utility of MALDI IMS as a new method to type amyloidosis in histopathological routine material and characterize amyloid-associated proteins that may provide insights into the pathogenetic process of amyloid formation.


Assuntos
Amiloide/análise , Amiloidose/patologia , Rim/patologia , Placa Amiloide/patologia , Amiloidose/diagnóstico , Apolipoproteínas E/análise , Humanos , Cadeias Leves de Imunoglobulina/análise , Placa Amiloide/diagnóstico , Proteína Amiloide A Sérica/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Vitronectina/análise
18.
Methods ; 81: 74-85, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25766926

RESUMO

A fully automated workflow was developed and validated for simultaneous quantification of the cardiovascular disease risk markers apolipoproteins A-I (apoA-I) and B-100 (apoB-100) in clinical sera. By coupling of stable-isotope standards and capture by anti-peptide antibodies (SISCAPA) for enrichment of proteotypic peptides from serum digests to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS detection, the standardized platform enabled rapid, liquid chromatography-free quantification at a relatively high throughput of 96 samples in 12h. The average imprecision in normo- and triglyceridemic serum pools was 3.8% for apoA-I and 4.2% for apoB-100 (4 replicates over 5 days). If stored properly, the MALDI target containing enriched apoA-1 and apoB-100 peptides could be re-analyzed without any effect on bias or imprecision for at least 7 days after initial analysis. Validation of the workflow revealed excellent linearity for daily calibration with external, serum-based calibrators (R(2) of 0.984 for apoA-I and 0.976 for apoB-100 as average over five days), and absence of matrix effects or interference from triglycerides, protein content, hemolysates, or bilirubins. Quantification of apoA-I in 93 normo- and hypertriglyceridemic clinical sera showed good agreement with immunoturbidimetric analysis (slope = 1.01, R(2) = 0.95, mean bias = 4.0%). Measurement of apoB-100 in the same clinical sera using both methods, however, revealed several outliers in SISCAPA-MALDI-TOF-MS measurements, possibly as a result of the lower MALDI-TOF-MS signal intensity (slope = 1.09, R(2) = 0.91, mean bias = 2.0%). The combination of analytical performance, rapid cycle time and automation potential validate the SISCAPA-MALDI-TOF-MS platform as a valuable approach for standardized and high-throughput quantification of apoA-I and apoB-100 in large sample cohorts.


Assuntos
Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos Monoclonais , Apolipoproteína A-I/imunologia , Apolipoproteína B-100/imunologia , Biomarcadores/sangue , Calibragem , Humanos , Fluxo de Trabalho
19.
Expert Rev Proteomics ; 12(2): 115-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720436

RESUMO

Proteins are an important class of biologics. Their higher-order structures and therefore their functions are fundamentally determined by the correct formation of disulfide bonds (DSBs), making DSB analysis a central part of their development and production. Mass spectrometry-based bottom-up approaches are most widely used and are further classified according to different methods applied for DSB cleavage. Despite the importance of DSB analysis and the wide range of available methodologies, it is often a challenging and time consuming task. However, due to the current increase in biosimilar development in which animal and clinical trials can be reduced by extensive analytical comparability studies, increased efforts are being made to simplify DSB analysis. As an example of these developments, a matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF workflow for the automated profiling and identification of DSBs is presented. Furthermore, mass spectrometry based methodologies, which do not identify DSBs directly but measure their influence on the higher-order structure, are also considered.


Assuntos
Dissulfetos/química , Espectrometria de Massas/métodos , Proteínas/química , Humanos , Proteínas/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico
20.
Histochem Cell Biol ; 143(5): 453-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25534592

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) is emerging as a powerful tool for the analysis of molecular distributions in biological samples in situ. When compared to classical histology, the major benefit of this method is the ability to identify and localize many molecules in a single tissue sample. MALDI-MSI spatial resolution currently falls short of traditional microscopic methods as it is limited by instrumentation and sample preparation. Tissue preparation steps, such as matrix deposition, are critical when considering strategies to further enhance the spatial resolution. The mammalian retina was selected as the tissue of choice for method development; its stratified anatomy renders it an ideal tissue to test high-resolution MALDI-MSI as the different layers correspond to specific neuronal classes and cellular structures. We compared alcohol-fixed, paraffin-embedded retina to fresh-frozen samples and matrix that had been deposited by spray or by sublimation. We present a lipid imaging method based on MALDI-MSI of frozen retinal sections with sublimated 2,5-dihydroxybenzoic acid matrix, which results in a highly advanced resolution compared to previous established methods. Hierarchical clustering of the primary data allows robust detection and differentiation of molecular distributions at a spatial resolution between 10 and 20 µm, thus approaching single-cell resolution.


Assuntos
Lipídeos/análise , Retina/química , Manejo de Espécimes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Análise por Conglomerados , Criopreservação , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Inclusão em Parafina , Retina/citologia , Manejo de Espécimes/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA