Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Radiat Res ; 65(2): 159-167, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38151953

RESUMO

Previous studies have primarily focused on quality of imaging in radiotherapy planning computed tomography (RTCT), with few investigations on imaging doses. To our knowledge, this is the first study aimed to investigate the imaging dose in RTCT to determine baseline data for establishing national diagnostic reference levels (DRLs) in Japanese institutions. A survey questionnaire was sent to domestic RT institutions between 10 October and 16 December 2021. The questionnaire items were volume computed tomography dose index (CTDIvol), dose-length product (DLP), and acquisition parameters, including use of auto exposure image control (AEC) or image-improving reconstruction option (IIRO) for brain stereotactic irradiation (brain STI), head and neck (HN) intensity-modulated radiotherapy (IMRT), lung stereotactic body radiotherapy (lung SBRT), breast-conserving radiotherapy (breast RT), and prostate IMRT protocols. Details on the use of motion-management techniques for lung SBRT were collected. Consequently, we collected 328 responses. The 75th percentiles of CTDIvol were 92, 33, 86, 23, and 32 mGy and those of DLP were 2805, 1301, 2416, 930, and 1158 mGy·cm for brain STI, HN IMRT, lung SBRT, breast RT, and prostate IMRT, respectively. CTDIvol and DLP values in institutions that used AEC or IIRO were lower than those without use for almost all sites. The 75th percentiles of DLP in each treatment technique for lung SBRT were 2541, 2034, 2336, and 2730 mGy·cm for free breathing, breath holding, gating technique, and real-time tumor tracking technique, respectively. Our data will help in establishing DRLs for RTCT protocols, thus reducing imaging doses in Japan.


Assuntos
Encéfalo , Radiocirurgia , Tomografia Computadorizada por Raios X , Humanos , Masculino , Japão , Doses de Radiação , Valores de Referência , Inquéritos e Questionários , Tomografia Computadorizada por Raios X/métodos , Encéfalo/efeitos da radiação
2.
BMC Med Imaging ; 23(1): 102, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528392

RESUMO

BACKGROUND: Megavoltage computed tomography (MVCT) images acquired during each radiotherapy session may be useful for delta radiomics. However, no studies have examined whether the MVCT-based radiomics has prognostic power. Therefore, the purpose of this study was to examine the prognostic power of the MVCT-based radiomics for head and neck squamous cell carcinoma (HNSCC) patients. METHODS: 100 HNSCC patients who received definitive radiotherapy were analyzed and divided into two groups: training (n = 70) and test (n = 30) sets. MVCT images obtained using TomoTherapy for the first fraction of radiotherapy and planning kilovoltage CT (kVCT) images obtained using Aquilion LB CT scanner were analyzed. Primary gross tumor volume (GTV) was propagated from kVCT to MVCT images using rigid registration, and 107 radiomic features were extracted from the GTV in MVCT and kVCT images. Least absolute shrinkage and selection operator (LASSO) Cox regression model was used to examine the association between overall survival (OS) and rad score calculated for each patient by weighting the feature value through the coefficient when features were selected. Then, the predictive values of MVCT-based and kVCT-based rad score and patient-, treatment-, and tumor-specific factors were evaluated. RESULTS: C-indices of the rad score for MVCT- and kVCT-based radiomics were 0.667 and 0.685, respectively. The C-indices of 6 clinical factors were 0.538-0.622. The 3-year OS was significantly different between high- and low-risk groups according to the MVCT-based rad score (50% vs. 83%; p < 0.01). CONCLUSIONS: Our results suggested that MVCT-based radiomics had stronger prognostic power than any single clinical factor and was a useful prognostic factor when predicting OS in HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Prognóstico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
3.
J Appl Clin Med Phys ; 24(7): e14059, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37307247

RESUMO

In this study, the effective point of measurement (EPOM) for plane-parallel ionization chambers in clinical high-energy electron beams was determined experimentally. Previous studies have reported that the EPOM of plane-parallel chambers is shifted several tens of millimeters downstream from the inner surface of the entrance window to the cavity. These findings were based on the Monte Carlo (MC) simulation, and few experimental studies have been performed. Thus, additional experimental validations of the reported EPOMs were required. In this study, we investigated the EPOMs of three plane-parallel chambers (NACP-02, Roos and Advanced Markus) for clinical electron beams. The EPOMs were determined by comparing the measured percentage depth-dose (PDD) of the plane-parallel chambers and the PDD obtained using the microDiamond detector. The optimal shift to the EPOM was energy-dependent. The determined EPOM showed no chamber-to-chamber variation, thereby allowing the use of a single value. The mean optimal shifts were 0.104 ± 0.011, 0.040 ± 0.012, and 0.012 ± 0.009 cm for NACP-02, Roos, and Advanced Markus, respectively. These values are valid in the R50 range from 2.40 to 8.82 cm, which correspond to 6-22 MeV. Roos and Advanced Markus exhibited similar results to those of the previous studies, but NACP-02 showed a larger shift. This is probably due to the uncertainty of the entrance window of NACP-02. Therefore, it is necessary to carefully consider where the optimal EPOM is located when using this chamber.


Assuntos
Elétrons , Radiometria , Humanos , Radiometria/métodos , Simulação por Computador , Método de Monte Carlo
4.
J Appl Clin Med Phys ; 23(3): e13519, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35001518

RESUMO

PURPOSE: The dual-layer multi-leaf collimator (MLC) in Halcyon involves further complexities in the dose calculation process, because the leaf-tip transmission varies according to the leaf trailing pattern. For the volumetric modulated arc therapy (VMAT) treatment, the prescribed dose for the target volume can be sensitive to the leaf-tip transmission change. This report evaluates the dosimetric consequence due to the uncertainty of the dual-layer MLC model in Eclipse through the dose verifications for clinical VMAT. Additionally, the Halcyon leaf-tip model is empirically adjusted for the VMAT dose calculation with the Acuros XB. MATERIALS AND METHODS: For this evaluation, an in-house program that analyzes the leaf position in each layer was developed. Thirty-two clinical VMAT plans were edited into three leaf sequences: dual layer (original), proximal single layer, or distal single layer. All leaf sequences were verified using Delta4 according to the dose difference (DD) and the global gamma index (GI). To improve the VMAT dose calculation accuracy, the dosimetric leaf gap (DLG) was adjusted to minimize the DD in single-layer leaf sequences. RESULTS: The mean of DD were -1.35%, -1.20%, and -1.34% in the dual-layer, proximal single-layer, and distal single-layer leaf sequences, respectively. The changes in the mean of DD between leaf sequences were within 0.2%. However, the calculated doses differed from the measured doses by approximately 1% in all leaf sequences. The tuned DLG was increased by 0.8 mm from the original DLG in Eclipse. When the tuned DLG was used in the dose calculation, the mean of DD neared 0% and GI with a criterion of 2%/2 mm yielded a pass rate of more than 98%. CONCLUSION: No significant change was confirmed in the dose calculation accuracy between the leaf sequences. Therefore, it is suggested that the dosimetric consequence due to the leaf trailing was negligibly small in clinical VMAT plans. The DLG tuning for Halcyon can be useful for reducing the dose calculation uncertainties in Eclipse VMAT and required in the commissioning for Acuros XB.


Assuntos
Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 22(8): 255-264, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272814

RESUMO

A realistic X-ray energy spectrum is essential for accurate dose calculation using the Monte Carlo (MC) algorithm. An energy spectrum for dose calculation in the radiation treatment planning system is modeled using the MC algorithm and adjusted to obtain acceptable agreement with the measured percent depth dose (PDD) and off-axis ratio. The simulated energy spectrum may not consistently reproduce a realistic energy spectrum. Therefore, direct measurement of the X-ray energy spectrum from a linac is necessary to obtain a realistic spectrum. Previous studies have measured low photon fluence directly, but the measurement was performed with a nonclinical linac with a thick target and a long target-to-detector distance. In this study, an X-ray energy spectrum from a clinical linac was directly measured using a NaI(Tl) scintillator at an ultralow dose rate achieved by adjusting the gun grid voltage. The measured energy spectrum was unfolded by the Gold algorithm and compared with a simulated spectrum using statistical tests. Furthermore, the PDD was calculated using an unfolded energy spectrum and a simulated energy spectrum was compared with the measured PDD to evaluate the validity of the unfolded energy spectrum. Consequently, there was no significant difference between the unfolded and simulated energy spectra by nonparametric, Wilcoxon's rank-sum, chi-square, and two-sample Kolmogorov-Smirnov tests with a significance level of 0.05. However, the PDD calculated from the unfolded energy spectrum better agreed with the measured compared to the calculated PDD results from the simulated energy spectrum. The adjustment of the incident electron parameters using MC simulation is sensitive and takes time. Therefore, it is desirable to obtain the energy spectrum by direct measurement. Thus, a method to obtain the realistic energy spectrum by direct measurement was proposed in this study.


Assuntos
Aceleradores de Partículas , Fótons , Simulação por Computador , Humanos , Método de Monte Carlo , Radiografia , Raios X
6.
Med Phys ; 47(10): 5324-5332, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32786073

RESUMO

PURPOSE: Ionization chambers are widely used for dosimetry with megavoltage photon beams. Several properties of ionization chambers, including the cable effect, polarity effect, and ion recombination loss, are described in standard dosimetry protocols. The cable effect is categorized as the leakage current and Compton current, and careful consideration of these factors has been described not only in reference dosimetry but also in large fields. However, the mechanism of Compton current in the cable has not been investigated thoroughly. The cable effect of ionization chambers in 6 MV X-ray beam was evaluated by measurement, and the mechanism of Compton current was investigated by Monte Carlo simulation. MATERIALS AND METHODS: Four PTW ionization chambers (TM30013, TM31010, TM31014, and TM31016) with the same type of mounted cable, but different ionization volumes, were used to measure output factor (OPF) and cable effect measurement. The OPF was measured to observe any variation resulting from the cable effect. The cable effect was evaluated separately for the leakage current and Compton current, and its charge per absorbed dose to water per cable length was estimated by a newly proposed method. The behavior of electrons and positrons in the core wire was analyzed and the Compton current for the photon beam was estimated by Monte Carlo simulation. RESULTS: In OPF measurement, the difference in the electrometer readings by polarity became obvious for the mini- or microchamber and its difference tended to be larger for a chamber with a smaller ionization volume. For the cable effect measurement, it was determined that the contribution of the leakage current to the cable effect was ignorable, while the Compton current was dominant. The charge due to the Compton current per absorbed dose to water per cable length was estimated to be 0.36 ± 0.03 pC Gy-1  cm-1 for PTW ionization chambers. As a result, the contribution of the Compton current to the electrometer readings was estimated to be 0.002% cm-1 for the Farmer-type, 0.011% cm-1 for the scanning, and 0.088% cm-1 for microchambers, respectively. By the simulation, it was determined that the Compton current for MV x-ray could be explained by not only recoil electrons due to Compton scattering but also positron due to pair production. The Compton current estimated by the difference in outflowing and inflowing charge was 0.45 pC Gy-1  cm-1 and was comparable with the measured value. CONCLUSION: The cable effect, which includes the leakage current and Compton current, was quantitatively estimated for several chambers from measurements, and the mechanism of Compton current was investigated by Monte Carlo simulation. It was determined that the Compton current is a dominant component of the cable effect and its charge is consistently positive and nearly the same, irrespective of the ionization chamber volume. The contribution of Compton current to the electrometer readings was estimated for chambers. The mechanism of Compton current was analyzed and it was confirmed that the Compton current can be estimated from the difference in outflowing and inflowing charge to and from the core wire.


Assuntos
Fótons , Radiometria , Simulação por Computador , Elétrons , Método de Monte Carlo
7.
J Appl Clin Med Phys ; 18(6): 71-78, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28895278

RESUMO

For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger Compton scatter photons. In this work, an original image processing algorithm is proposed to improve and enhance the image contrast without increasing the imaging dose. Scatter estimation was performed in detail by MC simulation based on patient CT data. In the image processing, scatter photons were eliminated and then they were reprojected as primary photons on the assumption that Compton interaction did not take place. To improve the processing efficiency, the dose spread function within the EPID was investigated and implemented on the developed code. Portal images with and without the proposed image processing were evaluated by the image contrast profile. By the subtraction process, the image contrast was improved but the EPID signal was weakened because 15.2% of the signal was eliminated due to the contribution of scatter photons. Hence, these scatter photons were reprojected in the reprojection process. As a result, the tumor, bronchi, mediastinal space and ribs were observed more clearly than in the original image. It was clarified that image processing with the dose spread functions provides stronger contrast enhancement while maintaining a sufficient signal-to-noise ratio. This work shows the feasibility of improving and enhancing the contrast of portal images.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Radiografia Torácica , Algoritmos , Humanos , Fótons , Espalhamento de Radiação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA