Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114333, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865244

RESUMO

Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-ß and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function. Loss of DOT1L skews NK cells toward intILC1s even in the absence of TGF-ß. Transcriptionally, DOT1L-null NK cells closely resemble intILC1s and ILC1s, correlating with altered NK cell responses and impaired solid tumor control. These findings deepen our understanding of NK cell biology and could inform approaches to prevent NK cell conversion to intILC1s in adoptive NK cell therapies for cancer.


Assuntos
Histona-Lisina N-Metiltransferase , Células Matadoras Naturais , Fenótipo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo
2.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182668

RESUMO

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Assuntos
Células Matadoras Naturais , Fator de Transcrição AP-1 , Fator de Transcrição AP-1/genética , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-15 , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
3.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37397992

RESUMO

The inhibition of protein tyrosine phosphatases (PTPs), such as PTP1B and PTPN2 that function as intracellular checkpoints, has emerged as an exciting new approach for bolstering T cell anti-tumor immunity to combat cancer. ABBV-CLS-484 is a dual PTP1B and PTPN2 inhibitor currently in clinical trials for solid tumors. Here we have explored the therapeutic potential of targeting PTP1B and PTPN2 with a related small molecule inhibitor, Compound 182. We demonstrate that Compound 182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances antigen-induced T cell activation and expansion ex vivo and represses the growth of syngeneic tumors in C57BL/6 mice without promoting overt immune-related toxicities. Compound 182 repressed the growth of immunogenic MC38 colorectal and AT3-OVA mammary tumors as well as immunologically cold AT3 mammary tumors that are largely devoid of T cells. Treatment with Compound 182 increased both the infiltration and activation of T cells, as well as the recruitment of NK cells and B cells that promote anti-tumor immunity. The enhanced anti-tumor immunity in immunogenic AT3-OVA tumors could be ascribed largely to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold AT3 tumors, Compound 182 elicited both direct effects on tumor cells and T cells to facilitate T cell recruitment and thereon activation. Importantly, treatment with Compound 182 rendered otherwise resistant AT3 tumors sensitive to anti-PD1 therapy. Our findings establish the potential for small molecule active site inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.

4.
Curr Opin Immunol ; 84: 102364, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451129

RESUMO

Over recent years, the use of immune checkpoint inhibitors (ICI) has progressed to first and second-line treatments in several cancer types, transforming patient outcomes. While these treatments target T cell checkpoints, such as PD-1, LAG3 and CTLA-4, their efficacy can be compromised through adaptive resistance whereby tumors acquire mutations in genes regulating neoantigen presentation by MHC-I [93]. ICI-responsive tumor types such as advanced metastatic melanoma typically have a high mutational burden and immune infiltration; however, most patients still do not benefit from ICI monotherapy for a number of reasons [94]. This highlights the need for novel immunotherapy strategies that evoke the immune control of tumor cells with low neoantigen/MHC-I expression, overcome immune suppressive tumor microenvironments and promote tumor inflammation. In this regard, targeting natural killer (NK) cells may offer a solution to some of these bottlenecks.

5.
Nat Commun ; 14(1): 4524, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500611

RESUMO

The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Camundongos , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Monoéster Fosfórico Hidrolases , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linfócitos T/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA