Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 585, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862878

RESUMO

BACKGROUND: Anguillid eels spend their larval period as leptocephalus larvae that have a unique and specialized body form with leaf-like and transparent features, and they undergo drastic metamorphosis to juvenile glass eels. Less is known about the transition of leptocephali to the glass eel stage, because it is difficult to catch the metamorphosing larvae in the open ocean. However, recent advances in rearing techniques for the Japanese eel have made it possible to study the larval metamorphosis of anguillid eels. In the present study, we investigated the dynamics of gene expression during the metamorphosis of Japanese eel leptocephali using RNA sequencing. RESULTS: During metamorphosis, Japanese eels were classified into 7 developmental stages according to their morphological characteristics, and RNA sequencing was used to collect gene expression data from each stage. A total of 354.8 million clean reads were generated from the body and 365.5 million from the head, after the processing of raw reads. For filtering of genes that characterize developmental stages, a classification model created by a Random Forest algorithm was built. Using the importance of explanatory variables feature obtained from the created model, we identified 46 genes selected in the body and 169 genes selected in the head that were defined as the "most characteristic genes" during eel metamorphosis. Next, network analysis and subsequently gene clustering were conducted using the most characteristic genes and their correlated genes, and then 6 clusters in the body and 5 clusters in the head were constructed. Then, the characteristics of the clusters were revealed by Gene Ontology (GO) enrichment analysis. The expression patterns and GO terms of each stage were consistent with previous observations and experiments during the larval metamorphosis of the Japanese eel. CONCLUSION: Genome and transcriptome resources have been generated for metamorphosing Japanese eels. Genes that characterized metamorphosis of the Japanese eel were identified through statistical modeling by a Random Forest algorithm. The functions of these genes were consistent with previous observations and experiments during the metamorphosis of anguillid eels.


Assuntos
Anguilla , Perfilação da Expressão Gênica , Larva , Metamorfose Biológica , Animais , Metamorfose Biológica/genética , Larva/crescimento & desenvolvimento , Larva/genética , Anguilla/genética , Anguilla/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento
2.
Arch Microbiol ; 206(1): 47, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160217

RESUMO

A novel filamentous eel-leptocephalus pathogenic marine bacterium, designated strain EL160426T, was isolated from Japanese eel, Anguilla japonica, leptocephali reared at a laboratory in Mie, Japan. In experimental infection studies on eel larvae, the strain EL160426T caused massive larval mortality and was reisolated from moribund leptocephali. Characteristically, observations of infected larvae found that EL160426T forms columnar colonies on the cranial surface of larvae. The novel isolate exhibited growth at 15-30 °C, pH 7-9, and seawater concentrations of 60-150% (W/V). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EL160426T was most closely related to Aureispira maritima 59SAT with 97.7% sequence similarity. The whole genome sequence analysis of the strain EL160426T showed that the strain maintained a circular chromosome with a size of approximately 7.58 Mbp and the DNA G + C content was 36.2%. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were 16:0, 20:4 w6c (arachidonic acid), 17:0 iso and 16:0 N alcohol. DNA relatedness between the closest phylogenetic neighbor strain EL160426T and A. maritima (JCM23207T) was less than 13%. On the basis of the polyphasic taxonomic data, the strain represents a novel species of the genus Aureispira, for which the name Aureispira anguillae sp. nov. is proposed. The type strain is EL160426T (= JCM 35024 T = TSD-286 T).


Assuntos
Anguilla , Animais , Anguilla/genética , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Água do Mar/microbiologia , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise
3.
Biology (Basel) ; 11(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35741455

RESUMO

Anguillid eels are the iconic example of catadromous fishes, because of their long-distance offshore spawning migrations. They are also a good model for research on the onset mechanisms of migrations to breeding areas, because the migrations begin in inland waters. When eels transform from yellow eels to silver eels, it is called silvering. Silver eels show various synchronous external and internal changes during silvering, that include coloration changes, eye-size increases, and gonadal development, which appear to be pre-adaptations to the oceanic environment and for reproductive maturation. A strong gonadotropic axis activation occurs during silvering, whereas somatotropic and thyrotropic axes are not activated. Among various hormones, 11-ketotestosterone (11-KT) drastically increases during spawning migration onset. Gradual water temperature decreases simulating the autumn migratory season, inducing 11-KT increases. Administration of 11-KT appeared to cause changes related to silvering, such as early-stage oocyte growth and eye enlargement. Moreover, 11-KT may be an endogenous factor that elevates the migratory drive needed for the spawning migration onset. These findings suggested that water temperature decreases cause 11-KT to increase in autumn and this induces silvering and increases migratory drive. In addition, we newly report that 11-KT is associated with a corticotropin-releasing hormone that influences migratory behavior of salmonids. This evidence that 11-KT might be among the most important factors in the spawning migration onset of anguillid eels can help provide useful knowledge for understanding endocrinological mechanisms of the initiation of spawning migrations.

4.
Gen Comp Endocrinol ; 317: 113977, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065055

RESUMO

Growth hormone (Gh) regulates somatic growth in fishes, particularly through the Gh - insulin-like growth factor-I (Igf-I) axis. In this study, recombinant Japanese eel Ghs with or without C-terminal peptides of human chorionic gonadotropin (CTP), which are known to prolong the half-life, were produced using the HEK 293 and CHO expression system. The effect of recombinant Gh administration to eel larvae on their somatic growth was investigated in short-term feeding experiments, and it was found that three types of recombinant Ghs with CTP (CTP-reGh, reGh-CTP and reGh-CTP × 2) were more effective in promoting somatic growth in eel larvae than recombinant Ghs without CTP. Among the three recombinant Ghs with CTP, reGh-CTP × 2 had the highest growth-promoting effects, however only when provided in the short term. After long-term administration of reGh-CTP × 2, there was no difference in growth between the Gh administrated group and the control group. The survival rate of eel larvae were not affected by recombinant Ghs. In addition, the mRNA expression of gh, Gh receptors, Igf-I and IGF-II were measured by quantitative real-time PCR, and significant reductions in the expression of gh, Gh receptors and Igf-I were observed. These findings provide useful tools to study the mechanisms of somatic growth and increase understanding of Gh regulation in anguillid eel larvae.


Assuntos
Anguilla , Anguilla/genética , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Larva/metabolismo , Receptores da Somatotropina/metabolismo
5.
J Fish Biol ; 100(2): 454-473, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34813089

RESUMO

Organogenesis of Japanese eels (Anguilla japonica) was investigated histologically from the late leptocephalus to the yellow eel stages. Early organogenesis, such as the formation of inner ears and the appearance of round blood cells that might be larval erythrocytes, had already begun at the late leptocephalus stage. During the first developmental phase (M1-M3 stages) of metamorphosing into early glass eels (G1 stage), the formation of gills and lateral muscles progressed conspicuously with a drastic body shape change from leaf-like to eel-like. In contrast, obvious regression in oesophageal muscle and pancreas occurred during metamorphosis. Formation of lateral line canals advanced continuously until the yellow eel stage. When the second developmental phase was initiated at the G1 stage, cone photoreceptor cells appeared, and the formation of oesophageal, stomach and intestinal muscles was initiated. Differentiation of gastric glands began at 1 week after metamorphosis. Erythrocytes increased continuously in density in glass eels and elvers (G1-E2 stages), and the morphological features of cone cells and olfactory epidermal cells became clearer with stage progression. In early elvers (E1 stage), the swimbladder initiated inflation, the stomach fully expanded and the rectal longitudinal fold changed to a circle. Swimbladder gas glands appeared in late elvers (E2 stage). In the yellow eels (juvenile stage), almost all organ structures were formed. These observations indicate that the organogenesis of A. japonica is ongoing after metamorphosis into glass eels, and the M1-E2 stages are considered to be a homologous phase to first metamorphosis, which is a transformation from the larval to the juvenile stages in other teleosts. In comparison to conger eels, the completion of the body shape change to eel-like occurs at the G1 stage, when organogenesis is still in progress, being followed by a prolonged duration of the G1-E2 stages before reaching the yellow eel juvenile stage, which may be a unique characteristic that is related to the early migratory life history of A. japonica.


Assuntos
Anguilla , Anguilla/anatomia & histologia , Animais , Enguias , Brânquias , Larva , Metamorfose Biológica/fisiologia , Músculos
6.
PLoS Genet ; 17(8): e1009705, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437539

RESUMO

Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Osmeriformes/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Sequenciamento Completo do Genoma/métodos , Animais , Feminino , Proteínas de Peixes/genética , Mutação com Perda de Função , Masculino , Caracteres Sexuais , Sintenia
7.
J Fish Biol ; 96(3): 558-569, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31837014

RESUMO

Downstream-migrating (n = 64) and non-migrating (n = 21) female Celebes eels Anguilla celebesensis were captured from the Poso Lake-River system on Sulawesi Island, Indonesia, and their reproductive physiological characteristics were examined. A histological observation of the ovaries revealed that most non-migrating eels were at the perinucleolus (43%) or oil-droplet (48%) stage, whereas most migrating eels were at the early vitellogenic (36%) or midvitellogenic (61%) stage. Transcript levels of gonadotropin genes (fshb, lhb) in the pituitary gland and concentrations of sex steroids [11-ketotestosterone (11-KT), testosterone, 17ß-oestradiol (E2 )] in blood plasma of migrating eels were significantly higher than those of non-migrating eels. The fshb messenger (m)RNA levels were lower in perinucleolus and oil-droplet stages and then significantly increased in the early vitellogenic stage. The lhb mRNA levels in vitellogenic-stage eels were significantly higher than those in perinucleolus- and oil-droplet-stage eels. The 11-KT levels of eels at the oil-droplet and vitellogenic stages were significantly higher than those of eels at the perinucleolus stage. The E2 levels at the vitellogenic stage were significantly higher than those at the perinucleolus and oil-droplet stages. These dynamics of the reproductive hormones represented the physiological background of oogenesis in A. celebesensis that has remarkably well-developed oocytes just before downstream migration.


Assuntos
Anguilla/fisiologia , Migração Animal , Ovário/crescimento & desenvolvimento , Reprodução/fisiologia , Anguilla/anatomia & histologia , Anguilla/sangue , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/genética , Indonésia , Oogênese , Hipófise/metabolismo , Rios , Vitelogênese
8.
PLoS One ; 13(8): e0201784, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157280

RESUMO

The Japanese eel (Anguilla japonica) is among the most important aquaculture fish species in Eastern Asia. The present study aimed to identify the genetic parameters underlying body size and the timing at metamorphosis from leptocephali to glass eels in captive-bred Japanese eels, with the intent to foster sustainable development. Larvae from a partly factorial cross (14 sires × 11 dams) were reared until the point of metamorphosis into glass eels. In these organisms, we observed moderate heritability and mild genetic correlations among traits related to body size (h2 = 0.16-0.33) and timing at metamorphosis (h2 = 0.36-0.41). In an F1 full-sib family, quantitative trait loci (QTL) mapping for these traits identified one significant (genome-wide P < 0.05) and five suggestive QTLs (chromosome-wide P < 0.05). These results suggest that in the Japanese eel, metamorphic traits exhibit a polygenic genetic structure comprising many QTLs with small effects. In addition, we updated the genetic linkage map for the Japanese eel and integrated it with our newly constructed de novo genome assembly. The information and tools generated from this study will contribute to the development of freshwater eel genetics and genomics.


Assuntos
Anguilla/genética , Tamanho Corporal/genética , Metamorfose Biológica/genética , Locos de Características Quantitativas , Anguilla/anatomia & histologia , Anguilla/crescimento & desenvolvimento , Animais , Aquicultura , Cruzamento , Mapeamento Cromossômico , Feminino , Ligação Genética , Masculino , Modelos Genéticos , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Análise de Sequência de DNA
9.
Biol Lett ; 14(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997187

RESUMO

Many diadromous fishes such as salmon and eels that move between freshwater and the ocean have evolved semelparous reproductive strategies, but both groups display considerable plasticity in characteristics. Factors such as population density and growth, predation risk or reproduction cost have been found to influence timing of maturation. We investigated the relationship between female size at maturity and individual growth trajectories of the long-lived semelparous European eel, Anguilla anguilla A Bayesian model was applied to 338 individual growth trajectories of maturing migration-stage female silver eels from France, Ireland, the Netherlands and Hungary. The results clearly showed that when growth rates declined, the onset of maturation was triggered, and the eels left their growth habitats and migrated to the spawning area. Therefore, female eels tended to attain larger body size when the growth conditions were good enough to risk spending extra time in their growth habitats. This flexible maturation strategy is likely related to the ability to use diverse habitats with widely ranging growth and survival potentials in the catadromous life-history across its wide species range.


Assuntos
Anguilla/crescimento & desenvolvimento , Tamanho Corporal/fisiologia , Maturidade Sexual/fisiologia , Migração Animal/fisiologia , Animais , Ecossistema , Europa (Continente) , Feminino , Água Doce
10.
Sci Rep ; 5: 17430, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26617079

RESUMO

Migratory restlessness refers to a type of locomotor activity observed just before the onset of a migration. This behavior is primarily known in birds, where it is considered to be an indicator of the urge for migration. In contrast, little is known about migratory restlessness in fishes. To confirm migratory restlessness in a fish, we measured the locomotor activity of the Japanese eel, Anguilla japonica during its migration season. Migratory-phase silver eels showed higher locomotor activity in aquaria than yellow eels at the non-migratiory growth-phase. Silver eels stayed outside of their shelters for longer durations in dark periods than yellow eels and were active even in light periods when yellow eels were inactive in the shelters. Silver eels had higher levels of the androgen hormone 11-ketotestosterone at the end of experiment than yellow eels. Administration of 11-ketotesosterone to yellow eels induced higher levels of locomotor activity than that observed in non-treated controls. These findings suggest that anguillid eels exhibit migratory restlessness just before their spawning migration and that 11-ketotestosterone may be involved in the onset of this behavior.


Assuntos
Androgênios/metabolismo , Anguilla , Migração Animal , Comportamento Animal , Animais , Atividade Motora , Fotoperíodo
11.
J Exp Zool A Ecol Genet Physiol ; 321(7): 357-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24692334

RESUMO

To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone ß-subunit TSH (TSHß) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHß mRNA level was observed at the early-metamorphosis stage. Similarly, TSHß mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHß mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations.


Assuntos
Anguilla/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Glândula Tireoide/fisiologia , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândula Tireoide/crescimento & desenvolvimento , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Tiroxina/sangue , Tri-Iodotironina/sangue
12.
Artigo em Inglês | MEDLINE | ID: mdl-23047050

RESUMO

For understanding the functions of the growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family of hormones, we examined pituitary mRNA expression of these hormones in anguillid eels in relation to salinity difference, silvering, and seasonal change. Female Japanese eels (Anguilla japonica) were collected in the brackish Hamana Lake and its freshwater rivers from July to December. To clarify the effect of salinity, the habitat use history of the eels were determined using otolith microchemistry. Expression levels of mRNA of each hormone were determined using real time PCR. Although GH and PRL have been known to be osmoregulatory hormones, there were no consistent differences in expression levels of these hormones between different salinity habitats. In contrast, SL mRNA expression was higher in eels from freshwater rivers than from the brackish lake. GH mRNA expression clearly decreased during silvering, whereas PRL and SL mRNA expression did not change. We also showed that PRL mRNA and SL mRNA decreased in the brackish lake and PRL mRNA increased in freshwater rivers from autumn to early winter. These findings provide basic knowledge for a further understanding of the role of these hormones.


Assuntos
Anguilla/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Hormônios Hipofisários/metabolismo , Prolactina/metabolismo , Salinidade , Animais , Biometria/métodos , Peso Corporal , Ecossistema , Feminino , Proteínas de Peixes/genética , Glicoproteínas/genética , Lagos , Pigmentação , Hormônios Hipofisários/genética , Prolactina/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Rios , Estações do Ano , Especificidade da Espécie
13.
Zoolog Sci ; 29(4): 254-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22468835

RESUMO

To evaluate the effects of sex steroids on silvering in the Japanese eel, Anguilla japonica, the development of oocytes, eye size, digestive tract, and swim bladder were studied in relation to observations of the profiles of plasma levels of sex steroids (estradiol 17ß, E2; testosterone, T; 11-ketotestosterone; 11-KT) during silvering for each sex and by administrating 11-KT to yellow eels. All steroids examined in the study increased in female eels after silvering had begun, whereas in males, only 11-KT increased significantly, and no statistical differences were found in plasma levels of E2 and T between eels in both developmental stages. 11-KT appeared to induce the early stage of oocyte growth, enlargement of the eyes, degeneration of the digestive tract and the development of the swim bladder. This suggested that 11-KT synchronously accelerates early development of the ovaries and the morphological changes, possibly in adaption to oceanic migration, and that 11-KT is one of the most important factors in early stages of development in the Japanese eel, as it appears to be in other anguillid eels.


Assuntos
Anguilla/crescimento & desenvolvimento , Anguilla/fisiologia , Oócitos/crescimento & desenvolvimento , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Testosterona/análogos & derivados , Androgênios/farmacologia , Animais , Feminino , Masculino , Testosterona/farmacologia
14.
Zoolog Sci ; 28(3): 180-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21385058

RESUMO

The profiles of sex steroids (estradiol-17ß, testosterone and 11-ketotestosterone) and the mRNA levels of gonadotropins (luteinizing hormone and follicle-stimulating hormone) were investigated before and after downstream migration in females of the Japanese eel species Anguilla japonica, which were collected in the brackish Hamana Lake and its inlet freshwater rivers. Eels were separated into three groups using otolith microchemistry: 'migrants' that grew in the inlet rivers and then made a downstream migration to Hamana Lake mainly in October and November; 'non-migrant' yellow eels caught in rivers during the same season; and 'residents,' which were yellow eels caught in rivers in August. Sex steroid levels, especially those of testosterone and 11-ketotestosterone, were higher in migrants than in non-migrants and residents. Real-time quantitative PCR analysis indicated that mRNA levels of luteinizing hormone (LH) ß-subunits were significantly higher in migrants than in other groups, whereas those of follicle-stimulating hormone ß-subunits did not show significant changes during downstream migration. The high levels of these hormones during downstream migration raise the question about if they also play a role in motivating the migratory behavior of eels.


Assuntos
Anguilla/fisiologia , Migração Animal/fisiologia , Estradiol/sangue , Gonadotropinas/metabolismo , Testosterona/análogos & derivados , Testosterona/sangue , Animais , Ecossistema , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rios , Testosterona/metabolismo
15.
Genes Genet Syst ; 83(5): 423-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19168993

RESUMO

We verified whether telomere length shortens with age in the loggerhead sea turtle (Caretta caretta) by measuring telomere lengths (relative telomere to single copy gene [T/S] ratios) in whole blood and epidermis from 20 captive individuals with a real-time PCR method. There was no significant correlation between age and relative T/S ratios in blood. Although the correlation between age and relative T/S ratios in epidermis was not significant, older turtles had smaller relative T/S ratios in epidermis. It was thus demonstrated that telomere length in epidermis could be a useful age estimator for sea turtles. Relative age information obtained with this simple, rapid, non-invasive technique may help to advance our understanding of the ecology of endangered sea turtles. This is the first publication on age-related changes in telomere length among chelonians.


Assuntos
Telômero/química , Tartarugas/genética , Fatores Etários , Animais , Reação em Cadeia da Polimerase , Telômero/metabolismo , Tartarugas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA