Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 425, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267420

RESUMO

Alkali metal (AM) intercalation between graphene layers holds promise for electronic manipulation and energy storage, yet the underlying mechanism remains challenging to fully comprehend despite extensive research. In this study, we employ low-voltage scanning transmission electron microscopy (LV-STEM) to visualize the atomic structure of intercalated AMs (potassium, rubidium, and cesium) in bilayer graphene (BLG). Our findings reveal that the intercalated AMs adopt bilayer structures with hcp stacking, and specifically a C6M2C6 composition. These structures closely resemble the bilayer form of fcc (111) structure observed in AMs under high-pressure conditions. A negative charge transferred from bilayer AMs to graphene layers of approximately 1~1.5×1014 e-/cm-2 was determined by electron energy loss spectroscopy (EELS), Raman, and electrical transport. The bilayer AM is stable in BLG and graphite superficial layers but absent in the graphite interior, primarily dominated by single-layer AM intercalation. This hints at enhancing AM intercalation capacity by thinning the graphite material.

2.
Small ; 20(16): e2308571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032162

RESUMO

Thermal conductivity measurements are conducted by optothermal Raman technique before and after the introduction of an axial tensile strain in a suspended single-walled carbon nanotube (SWCNT) through end-anchoring by boron nitride nanotubes (BNNTs). Surprisingly, the axial tensile strain (<0.4 %) in SWCNT results in a considerable enhancement of its thermal conductivity, and the larger the strain, the higher the enhancement. Furthermore, the thermal conductivity reduction with temperature is much alleviated for the strained nanotube compared to previously reported unstrained cases. The thermal conductivity of SWCNT increases with its length is also observed.

3.
Nano Lett ; 23(24): 11835-11841, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088831

RESUMO

In this work, we perform electron energy-loss spectroscopy (EELS) of freestanding graphene with high energy and momentum resolution to disentangle the quasielastic scattering from the excitation gap of Dirac electrons close to the optical limit. We show the importance of many-body effects on electronic excitations at finite transferred momentum by comparing measured EELS to ab initio calculations at increasing levels of theory. Quasi-particle corrections and excitonic effects are addressed within the GW approximation and the Bethe-Salpeter equation, respectively. Both effects are essential in the description of the EEL spectra to obtain a quantitative agreement with experiments, with the position, dispersion, and shape of both the excitation gap and the π plasmon being significantly affected by excitonic effects.

4.
ACS Nano ; 17(23): 23659-23670, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38007700

RESUMO

The nanospace of the van der Waals (vdW) gap between structural units of two-dimensional (2D) materials serves as a platform for growing unusual 2D systems through intercalation and studying their properties. Various kinds of metal chlorides have previously been intercalated for tuning the properties of host layered materials, but the atomic structure of the intercalants remains still unidentified. In this study, we investigate the atomic structural transformation of molybdenum(V) chloride (MoCl5) after intercalation into bilayer graphene (BLG). Using scanning transmission electron microscopy, we found that the intercalated material represents MoCl3 networks, MoCl2 chains, and Mo5Cl10 rings. Giant lattice distortions and frequent structural transitions occur in the 2D MoClx that have never been observed in metal chloride systems. The trend of symmetric to nonsymmetric structural transformations can cause additional charge transfer from BLG to the intercalated MoClx, as suggested by our density functional theory calculations. Our study deepens the understanding of the behavior of matter in the confined space of the vdW gap in BLG and provides hints at a more efficient tuning of material properties by intercalation for potential applications, including transparent conductive films, optoelectronics, and energy storage.

5.
Adv Mater ; 35(46): e2306631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795543

RESUMO

Monolayers of transition metal dichalcogenides (TMDs) are an ideal 2D platform for studying a wide variety of electronic properties and potential applications due to their chemical diversity. Similarly, single-walled TMD nanotubes (SW-TMDNTs)-seamless cylinders of rolled-up TMD monolayers-are 1D materials that can exhibit tunable electronic properties depending on both their chirality and composition. However, much less has been explored about their geometrical structures and chemical variations due to their instability under ambient conditions. Here, the structural diversity of SW-TMDNTs templated by boron nitride nanotubes (BNNTs) is reported. The outer surfaces and inner cavities of the BNNTs promote and stabilize the coaxial growth of SW-TMDNTs with various diameters, including few-nanometers-wide species. The chiral indices (n,m) of individual SW-MoS2 NTs are assigned by high-resolution transmission electron microscopy, and statistical analyses reveals a broad chirality distribution ranging from zigzag to armchair configurations. Furthermore, this methodology can be applied to the synthesis of various TMDNTs, such as selenides and alloyed Mo1- x Wx S2 . Comprehensive microscopic and spectroscopic analyses also suggest the partial formation of Janus MoS2(1- x ) Se2 x nanotubes. The BNNT-templated reaction provides a universal platform to characterize the chirality-dependent properties of 1D nanotubes with various electronic structures.

6.
Sci Adv ; 9(37): eadf9144, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713495

RESUMO

Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO2) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H2SO4. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO2 toward OER. A PEMWE using M-RuIrFeCoNiO2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.

7.
ACS Nano ; 17(18): 18433-18440, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682623

RESUMO

Bilayer graphene, which forms moiré superlattices, possesses distinct electronic and optical properties owing to its hybridized energy band and the emergence of van Hove singularities depending on its twist angle. Extensive research has been conducted on the global characteristics of moiré superlattices induced by their long-range periodicity. However, the local properties, which differ owing to the variations in the three-dimensional atomic arrangement, within a moiré unit cell have been rarely explored. In this study, we demonstrate the highly localized excitation of carbon 1s electrons to unoccupied van Hove singularities in twisted bilayer graphene by electron energy loss spectroscopy using a monochromated transmission electron microscope. The core-level excitations associated with the van Hove singularities exhibit a systematic twist-angle dependence analogous to optical excitations. Furthermore, local variations in the core-level van Hove singularity peaks, which can originate from the core-exciton lifetimes and band modifications corresponding to the local stacking geometry within a moiré unit cell, are unambiguously corroborated.

8.
ACS Nano ; 17(6): 5561-5569, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36820647

RESUMO

One-dimensional (1D) conducting materials are of great interest as potential building blocks for integrated nanocircuits. Ternary 1D transition-metal chalcogenides, consisting of M6X6 wires with intercalated A atoms (M = Mo or W; X = S, Se, or Te; A = alkali or rare metals, etc.), have attracted much attention due to their 1D metallic behavior, superconductivity, and mechanical flexibility. However, the conventional solid-state reaction usually produces micrometer-scale bulk crystals, limiting their potential use as nanoscale conductors. Here we demonstrate a versatile method to fabricate indium (In)-intercalated W6Te6 (In-W6Te6) bundles with a nanoscale thickness. We first prepared micrometer-long, crystalline bundles of van der Waals W6Te6 wires using chemical vapor deposition and intercalated In into the crystal via a vapor-phase reaction. Atomic-resolution electron microscopy revealed that In atoms were surrounded by three adjacent W6Te6 wires. First-principles calculations suggested that their wire-by-wire stacking can transform through postgrowth intercalation. Individual In-W6Te6 bundles exhibited metallic behavior, as theoretically predicted. We further identified the vibrational modes by combining polarized Raman spectroscopy and nonresonant Raman calculations.

9.
Nat Commun ; 14(1): 647, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746965

RESUMO

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.

10.
Nat Commun ; 14(1): 280, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650135

RESUMO

Self-reconstruction has been considered an efficient means to prepare efficient electrocatalysts in various energy transformation process for bond activation and breaking. However, developing nano-sized electrocatalysts through complete in-situ reconstruction with improved activity remains challenging. Herein, we report a bottom-up evolution route of electrochemically reducing Cs3Rh2I9 halide-perovskite clusters on N-doped carbon to prepare ultrafine Rh nanoparticles (~2.2 nm) with large lattice spacings and grain boundaries. Various in-situ and ex-situ characterizations including electrochemical quartz crystal microbalance experiments elucidate the Cs and I extraction and Rh reduction during the electrochemical reduction. These Rh nanoparticles from Cs3Rh2I9 clusters show significantly enhanced mass and area activity toward hydrogen evolution reaction in both alkaline and chlor-alkali electrolyte, superior to liquid-reduced Rh nanoparticles as well as bulk Cs3Rh2I9-derived Rh via top-down electro-reduction transformation. Theoretical calculations demonstrate water activation could be boosted on Cs3Rh2I9 clusters-derived Rh nanoparticles enriched with multiply sites, thus smoothing alkaline hydrogen evolution.

11.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35739274

RESUMO

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

12.
Nanoscale ; 14(45): 16968-16977, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36350092

RESUMO

Substitutional transition metal doping in two-dimensional (2D) layered dichalcogenides is of fundamental importance in manipulating their electrical, excitonic, magnetic, and catalytic properties through the variation of the d-electron population. Yet, most doping strategies are spatially global, with dopants embedded concurrently during the synthesis. Here, we report an area-selective doping scheme for W-based dichalcogenide single layers, in which pre-patterned graphene is used as a reaction mask in the high-temperature substitution of the W sublattice. The chemical inertness of the thin graphene layer can effectively differentiate the spatial doping reaction, allowing for local manipulation of the host 2D materials. Using graphene as a mask is also beneficial in the sense that it also acts as an insertion layer between the contact metal and the doped channel, capable of depinning the Fermi level for low contact resistivity. Tracing doping by means of chalcogen labelling, deliberate Cr embedment is found to become energetically favorable in the presence of chalcogen deficiency, assisting the substitution of the W sublattice in the devised chemical vapor doping scheme. Atomic characterization using scanning transmission electron microscopy (STEM) shows that the dopant concentration is controllable and varies linearly with the reaction time in the current doping approach. Using the same method, other transition metal atoms such as Mo, V, and Fe can also be doped in the patterned area.

14.
ACS Nano ; 16(10): 16636-16644, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36195582

RESUMO

Rolling two-dimensional (2D) materials into 1D nanotubes allows for greater functionality. Boron-nitride nanotubes (BNNTs) can serve as insulating 1D templates for the coaxial growth of guest nanotubes, without interfering with property characterization. However, their application as 1D templates has been greatly hindered by their poor dispersibility, inevitably resulting in the formation of thick bundles. Here we present the facile preparation of well-dispersed BNNT templates via surfactant dispersions and synthesis of 1D van der Waals heterostructures based on the BNNTs. Comprehensive microscopic analyses show the isolation of clean, high-quality BNNTs. Statistical analyses revealed that small-diameter double-walled BNNTs are highly enriched by chemical peeling of BN sidewalls through the sonication process. We further demonstrate that the isolated BNNTs can template the coaxial growth of carbon and MoS2 nanotubes by using chemical vapor deposition. The present strategy can be applied to the synthesis of a variety of nanotubes, thereby allowing for their characterization.

15.
ACS Nano ; 16(11): 18274-18283, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36305475

RESUMO

Developing efficient bifunctional electrocatalysts in neutral media to avoid the deterioration of electrodes or catalysts under harsh environments has become the ultimate goal in electrochemical water splitting. This work demonstrates the fabrication of an on-chip bifunctional two-dimensional (2D) monolayer (ML) WSe2/graphene heterojunction microreactor for efficient overall water splitting in a neutral medium (pH = 7). Through the synergistic atomic growth of the metallic Cr dopant and graphene stitching contact on the 2D ML WSe2, the bifunctional WSe2/graphene heterojunction microreactor consisting of a full-cell configuration demonstrates excellent performance for overall water splitting in a neutral medium. Atomic doping of metallic Cr atoms onto the 2D ML WSe2 effectively facilitates the charge transfer at the solid-liquid interface. In addition, the direct growth of the self-stitching graphene contact with the 2D WSe2 catalyst largely reduces the contact resistance of the microreactor and further improves the overall water splitting efficiency. A significant reduction of the overpotential of nearly 1000 mV at 10 mA cm-2 at the Cr-doped WSe2/graphene heterojunction microreactor compared to the ML pristine WSe2 counterpart is achieved. The bifunctional WSe2/graphene self-stitching heterojunction microreactor is an ideal platform to investigate the fundamental mechanism of emerging bifunctional 2D catalysts for overall water splitting in a neutral medium.

16.
Nature ; 609(7925): 46-51, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045238

RESUMO

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

17.
Small ; 18(37): e2203032, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35980982

RESUMO

The oxygen reduction reaction (ORR) 2e- pathway provides an alternative and green route for industrial hydrogen peroxide (H2 O2 ) production. Herein, the ORR photo/electrocatalytic activity in the alkaline electrolyte of manganese and iron porphyrin (MnP and FeP, respectively) electrostatically associated with modified 1T/2H MoS2 nanosheets is reported. The best performing catalyst, MnP/MoS2 , exhibits excellent electrocatalytic performance towards selective H2 O2 formation, with a low overpotential of 20 mV for the 2e- ORR pathway (Eons  = 680 mV vs RHE) and an H2 O2 yield up to 99%. Upon visible light irradiation, MnP/MoS2 catalyst shows significant activity enhancement along with good stability. Electrochemical impedance spectroscopy assays suggest a reduced charge transfer resistance value at the interface with the electrolyte, indicating an efficient intra-ensemble transfer process of the photo-excited electrons through the formation of a type II heterojunction or Schottky contact, and therefore justifies the boosted electrochemical activities in the presence of light. Overall, this work is expected to inspire the design of novel advanced photo/electrocatalysts, paving the way for sustainable industrial H2 O2 production.


Assuntos
Molibdênio , Porfirinas , Dissulfetos , Peróxido de Hidrogênio , Ferro , Manganês , Molibdênio/química , Peróxidos , Sulfetos
18.
ACS Nano ; 16(9): 14075-14085, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35921093

RESUMO

Bilayer graphene (BLG) has a two-dimensional (2D) interlayer nanospace that can be used to intercalate molecules and ions, resulting in a significant change of its electronic and magnetic properties. Intercalation of BLG with different materials, such as FeCl3, MoCl5, Li ions, and Ca ions, has been demonstrated. However, little is known about how the twist angle of the BLG host affects intercalation. Here, by using artificially stacked BLG with controlled twist angles, we systematically investigated the twist angle dependence of intercalation of metal chlorides. We discovered that BLG with high twist angles of >15° is more favorable for intercalation than BLG with low twist angles. Density functional theory calculations suggested that the weaker interlayer coupling in high twist angle BLG is the key for effective intercalation. Scanning transmission electron microscope observations revealed that co-intercalation of AlCl3 and CuCl2 molecules into BLG gives various 2D structures in the confined interlayer nanospace. Moreover, before intercalation we observed a significantly lower sheet resistance in BLG with high twist angles (281 ± 98 Ω/□) than that in AB stacked BLG (580 ± 124 Ω/□). Intercalation further decreased the sheet resistance, reaching values as low as 48 Ω/□, which is the lowest value reported so far for BLG. This work provides a twist angle-dependent phenomenon, in which enhanced intercalation and drastic changes of the electrical properties can be realized by controlling the stacking angle of adjacent graphene layers.

19.
ACS Nano ; 16(8): 12328-12337, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913822

RESUMO

The 1T-phase layered PtX2 chalcogenide has attracted widespread interest due to its thickness dependent metal-semiconductor transition driven by strong interlayer coupling. While the ground state properties of this paradigmatic material system have been widely explored, its fundamental excitation spectrum remains poorly understood. Here we combine first-principles calculations with momentum (q) resolved electron energy loss spectroscopy (q-EELS) to study the collective excitations in 1T-PtSe2 from the monolayer limit to the bulk. At finite momentum transfer, all the spectra are dominated by two distinct interband plasmons that disperse to higher energy with increasing q. Interestingly, the absence of long-range screening in the two-dimensional (2D) limit inhibits the formation of long wavelength plasmons. Consequently, in the small-q limit, excitations in monolayer PtSe2 are exclusively of excitonic nature, and the loss spectrum coincides with the optical spectrum. The qualitatively different momentum dependence of excitons and plasmons enables us to unambiguously disentangle their spectral fingerprints in the excited state spectrum of layered 1T-PtSe2. This will help to discern the charge carrier plasmon and locally map the optical conductivity and trace the layer-dependent semiconductor to metal transition in 1T-PtSe2 and other 2D materials.

20.
ACS Nano ; 16(8): 13069-13081, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35849128

RESUMO

The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T'-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T'-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T' and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T'-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T'-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T'-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T' structure, was clearly observed. Furthermore, the grown 1T'-phase WS2 showed superconductivity with the transition temperature in the 2.8-3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA