RESUMO
Recent studies using human pluripotent stem cells (hPSCs) have developed protocols to induce kidney-lineage cells and reconstruct kidney organoids. However, the separate generation of metanephric nephron progenitors (NPs), mesonephric NPs, and ureteric bud (UB) cells, which constitute embryonic kidneys, in in vitro differentiation culture systems has not been fully investigated. Here, we create a culture system in which these mesoderm-like cell types and paraxial and lateral plate mesoderm-like cells are separately generated from hPSCs. We recapitulate nephrogenic niches from separately induced metanephric NP-like and UB-like cells, which are subsequently differentiated into glomeruli, renal tubules, and collecting ducts in vitro and further vascularized in vivo. Our selective differentiation protocols should contribute to understanding the mechanisms underlying human kidney development and disease and also supply cell sources for regenerative therapies.
Assuntos
Técnicas de Cultura de Células/métodos , Linhagem da Célula/fisiologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais , Humanos , Rim/citologia , Mesoderma , Néfrons , Organogênese/fisiologia , Organoides/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologiaRESUMO
Orthotopic liver transplantation (OLT) is the only curative treatment for refractory chronic liver failure in liver cirrhosis. However, the supply of donated livers does not meet the demand for OLT due to donor organ shortage. Cell therapy using hepatocyte-like cells derived from human induced pluripotent stem cells (hiPSC-HLCs) is expected to mitigate the severity of liver failure, postpone OLT and ameliorate the insufficient liver supply. For the successful clinical translation of hiPSC-based cell therapy against liver cirrhosis, realistic animal models are required. In this study, we created a nonhuman primate (NHP) liver fibrosis model by repeated administrations of thioacetamide (TAA) and evaluated the short-term engraftment of hiPSC-HLCs in the fibrotic liver. The NHP liver fibrosis model reproduced well the pathophysiology of human liver cirrhosis including portal hypertension. Under immunosuppressive treatment, we transplanted ALBUMIN-GFP reporter hiPSC-HLC aggregates into the fibrotic livers of the NHP model via the portal vein. Fourteen days after the transplantation, GFP-expressing hiPSC-HLC clusters were detected in the portal areas of the fibrotic livers. These results will facilitate preclinical studies using the NHP liver fibrosis model and help establish iPSC-based cell therapies against liver cirrhosis.
Assuntos
Hepatócitos/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Macaca fascicularis , TioacetamidaRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMO
Cell therapy using renal progenitors differentiated from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) has the potential to significantly reduce the number of patients receiving dialysis therapy. However, the differentiation cultures may contain undifferentiated or undesired cell types that cause unwanted side effects, such as neoplastic formation, when transplanted into a body. Moreover, the hESCs/iPSCs are often genetically modified in order to isolate the derived renal progenitors, hampering clinical applications. To establish an isolation method for renal progenitors induced from hESCs/iPSCs without genetic modifications, we screened antibodies against cell surface markers. We identified the combination of four markers, CD9-CD140a+CD140b+CD271+, which could enrich OSR1+SIX2+ renal progenitors. Furthermore, these isolated cells ameliorated renal injury in an acute kidney injury (AKI) mouse model when used for cell therapy. These cells could contribute to the development of hiPSC-based cell therapy and disease modeling against kidney diseases.
Assuntos
Injúria Renal Aguda/terapia , Biomarcadores/metabolismo , Separação Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco/métodos , Injúria Renal Aguda/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , CamundongosRESUMO
UNLABELLED: Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. SIGNIFICANCE: This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases.