Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
J Hum Genet ; 62(5): 539-547, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28123175

RESUMO

Tafazzin, encoded by the TAZ gene, is a mitochondrial membrane-associated protein that remodels cardiolipin (CL), an important mitochondrial phospholipid. TAZ mutations are associated with Barth syndrome (BTHS). BTHS is an X-linked multisystemic disorder affecting usually male patients. Through sequence analysis of TAZ, we found one novel mutation c.39_60del p.(Pro14Alafs*19) by whole-exome sequencing and a reported missense mutation c.280C>T p.(Arg94Cys) by Sanger sequencing in two male patients (Pt1 and Pt2). Patient with c.280C>T mutation had dilated cardiomyopathy, while another patient with c.39_60del mutation had no feature of cardiomyopathy. A reported m.1555A>G homoplasmic variant was also identified in the patient having mutation c.39_60del by whole mitochondrial DNA sequencing method. This variant was not considered to be the main cause of mitochondrial dysfunction based on a cytoplasmic hybrid (cybrid) assay. Tafazzin expression was absent in both patient-derived fibroblast cells. Complementation of TAZ expression in fibroblasts from the patient with the novel mutation c.39_60del restored mitochondrial respiratory complex assembly. High-performance liquid chromatography-tandem mass spectrometry-based metabolic analysis revealed the decline of CL and the accumulation of monolysocardiolipin, indicating the loss of tafazzin activity. Owing to phenotypic variability, it is difficult to diagnose BTHS based on clinical features only. We conclude that genetic analysis should be performed to avoid underdiagnosis of this potentially life-threatening inborn error of metabolism.


Assuntos
Cardiomiopatias/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação/genética , Fatores de Transcrição/genética , Aciltransferases , Sequência de Bases , Criança , Pré-Escolar , Transporte de Elétrons/genética , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Fenótipo , Gravidez , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
4.
Sci Rep ; 6: 35908, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786288

RESUMO

Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional ß cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive ß cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including ß cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional ß cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived ß cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula , Técnicas de Introdução de Genes , Marcação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína Vermelha Fluorescente
5.
PLoS Genet ; 12(1): e1005679, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741492

RESUMO

Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.


Assuntos
Exoma/genética , Heterogeneidade Genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , DNA Mitocondrial/genética , Feminino , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Polimorfismo de Nucleotídeo Único/genética
6.
Stem Cells ; 34(2): 322-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26523946

RESUMO

Identification of a gene set capable of driving rapid and proper reprogramming to induced pluripotent stem cells (iPSCs) is an important issue. Here we show that the efficiency and kinetics of iPSC reprogramming are dramatically improved by the combined expression of Jarid2 and genes encoding its associated proteins. We demonstrate that forced expression of JARID2 promotes iPSC reprogramming by suppressing the expression of Arf, a known reprogramming barrier, and that the N-terminal half of JARID2 is sufficient for such promotion. Moreover, JARID2 accelerated silencing of the retroviral Klf4 transgene and demethylation of the Nanog promoter, underpinning the potentiating activity of JARID2 in iPSC reprogramming. We further show that JARID2 physically interacts with ESRRB, SALL4A, and PRDM14, and that these JARID2-associated proteins synergistically and robustly facilitate iPSC reprogramming in a JARID2-dependent manner. Our findings provide an insight into the important roles of JARID2 during reprogramming and suggest that the JARID2-associated protein network contributes to overcoming reprogramming barriers.


Assuntos
Técnicas de Reprogramação Celular/métodos , Proteínas de Ligação a DNA , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Complexo Repressor Polycomb 2 , Receptores de Estrogênio , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Fator 4 Semelhante a Kruppel , Camundongos , Complexo Repressor Polycomb 2/biossíntese , Complexo Repressor Polycomb 2/genética , Proteínas de Ligação a RNA , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
7.
J Biol Chem ; 288(7): 4522-37, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23275342

RESUMO

This report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the following three expression profiling data sets: adipocyte differentiation of mouse stromal cells (ST2 cells), adipose tissues from obesity mice, and siRNA-mediated knockdown of Pparγ using ST2 cells. Fam57b consists of three variants expressed from different promoters and contains a Tram-Lag1-CLN8 domain that is related to ceramide synthase. Reporter and ChIP assays showed that Fam57b variant 2 is a bona fide PPARγ target gene in ST2 cells. Fam57b was up-regulated during adipocyte differentiation, suggesting that FAM57B is involved in this process. Surprisingly, FAM57B overexpression inhibited adipogenesis, and siRNA-mediated knockdown promoted adipocyte differentiation. Analysis of the ceramide content by lipid assay found that ceramides were in fact augmented in FAM57B-overexpressing ST2 cells. We also confirmed that ceramide inhibits adipogenesis. Therefore, the aforementioned results of FAM57B overexpression and siRNA experiments are reconciled by ceramide synthesis. In summary, we present in vitro evidence showing that PPARγ regulates Fam57b transcription during the adipogenesis of ST2 cells. In addition, our results suggest that PPARγ activation contributes to the regulation of ceramide metabolism during adipogenesis via FAM57B.


Assuntos
Adipócitos/citologia , Ceramidas/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Obesidade/metabolismo , PPAR gama/metabolismo , Esfingosina N-Aciltransferase/biossíntese , Células 3T3 , Adipogenia , Animais , Sequência de Bases , Diferenciação Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Síndrome Metabólica/genética , Camundongos , Dados de Sequência Molecular , Obesidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA