Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2646: 327-336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842127

RESUMO

Mycoplasma mobile is one of the fastest gliding bacteria, gliding with a speed of 4.5 µm s-1. This gliding motility is driven by a concerted movement of 450 supramolecular motor units composed of three proteins, Gli123, Gli349, and Gli521, in the gliding motility machinery. With general experimental setups, it is difficult to obtain the information on how each motor unit works. This chapter describes strategies to decrease the number of active motor units to extract stepwise cell movements driven by a minimum number of motor units. We also describe an unforeseen motility mode in which the leg motions convert the gliding motion into rotary motion, which enables us to characterize the motor torque and energy-conversion efficiency by adding some more assumptions.


Assuntos
Proteínas de Bactérias , Mycoplasma , Proteínas de Bactérias/metabolismo , Rotação , Mycoplasma/metabolismo , Movimento
3.
Biophys J ; 122(3): 554-564, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560882

RESUMO

F1-ATPase is the world's smallest biological rotary motor driven by ATP hydrolysis at three catalytic ß subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying ß(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant ß and two wild-type ßs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated ß, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation.


Assuntos
Bacillus , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , Bacillus/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Proteínas Motores Moleculares/metabolismo , Hidrólise
4.
Commun Biol ; 5(1): 1368, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539506

RESUMO

Kinesin motor domains generate impulses of force and movement that have both translational and rotational (torque) components. Here, we ask how the torque component influences function in cargo-attached teams of weakly processive kinesins. Using an assay in which kinesin-coated gold nanorods (kinesin-GNRs) translocate on suspended microtubules, we show that for both single-headed KIF1A and dimeric ZEN-4, the intensities of polarized light scattered by the kinesin-GNRs in two orthogonal directions periodically oscillate as the GNRs crawl towards microtubule plus ends, indicating that translocating kinesin-GNRs unidirectionally rotate about their short (yaw) axes whilst following an overall left-handed helical orbit around the microtubule axis. For orientations of the GNR that generate a signal, the period of this short axis rotation corresponds to two periods of the overall helical trajectory. Torque force thus drives both rolling and yawing of near-spherical cargoes carrying rigidly-attached weakly processive kinesins, with possible relevance to intracellular transport.


Assuntos
Cinesinas , Nanotubos , Torque , Ouro , Microtúbulos
5.
Biochem Biophys Res Commun ; 555: 115-120, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33845395

RESUMO

Cin8, the Saccharomyces cerevisiae kinesin-5, has an essential role in mitosis. In in vitro motility assays, tetrameric and dimeric Cin8 constructs showed bidirectional motility in response to ionic strength or Cin8 motor density. However, whether property-switching directionality is present in a monomeric form of Cin8 is unknown. Here we engineered monomeric Cin8 constructs with and without the Cin8-specific ∼99 residues in the loop 8 domain and examined the directionality of these constructs using an in vitro polarity-marked microtubule gliding assay within the range of the motor density or ionic strength. We found that both monomeric constructs showed only plus end-directed activity over the ranges measured, which suggested that minus end-directed motility driven by Cin8 is necessary for at least dimeric forms. Using an in vitro microtubule corkscrewing assay, we also found that monomeric Cin8 corkscrewed microtubules around their longitudinal axes with a constant left-handed pitch. Overall, our results imply that plus-end-directed and left-handed motor activity comprise the intrinsic properties of the Cin8 motor domain as with other monomeric N-kinesins.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cinesinas/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética
6.
Commun Biol ; 4(1): 180, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568771

RESUMO

Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cinesinas/química , Cinesinas/genética , Cinética , Cadeias de Markov , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Microtúbulos/genética , Modelos Teóricos , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Fuso Acromático/química , Fuso Acromático/genética , Processos Estocásticos , Sus scrofa , Tubulina (Proteína)/química
7.
Cytoskeleton (Hoboken) ; 77(9): 351-361, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32845074

RESUMO

In in vitro microtubule gliding assays, most kinesins drive the rotation of gliding microtubules around their longitudinal axes in a corkscrew motion. The corkscrewing pitch is smaller than the supertwisted protofilament pitch of microtubules, indicating that the corkscrewing pitch is an inherent property of kinesins. To elucidate the molecular mechanisms through which kinesins corkscrew the microtubule, we performed three-dimensional tracking of a quantum dot bound to a microtubule translocating over a surface coated with single-headed kinesin-1 s under various assay conditions to alter the interactions between the kinesin and microtubule. Although alternations in kinesin concentration, ionic strength, and ATP concentration changed both gliding and rotational velocities, the corkscrewing pitch remained left-handed and constant at ~0.3 µm under all tested conditions apart from a slight increase in pitch at a low ATP concentration. We then used our system to analyze the effect of point mutations in the N-terminal ß-strand protruding from the kinesin motor core and found mutations that decreased the corkscrewing pitch. Our findings confirmed that the corkscrewing motion of microtubules is caused by the intrinsic properties of the kinesin and demonstrates that changes in the active or retarding force originating from the N-terminal ß-strand in the head modulate the pitch.


Assuntos
Cinesinas/metabolismo , Conformação Proteica em Folha beta/fisiologia , Humanos
8.
FEBS Lett ; 594(8): 1237-1247, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31853940

RESUMO

Anillin is a type of actin filament cross-linking protein that stabilizes the actin-based contractile ring during cytokinesis. To elucidate the underlying intermolecular interactions between actin filaments and anillin, we utilized total internal reflection fluorescence microscopy (TIRFM) and high-speed atomic force microscopy (Hs-AFM). Single-molecule imaging of anillin using TIRFM showed that anillin exists as monomers with relatively low binding affinity for actin filaments. Real-time imaging of actin filament cross-linking dynamics induced by anillin using Hs-AFM revealed that anillin monomers cross-link with actin filaments at a distance of 8 nm and that the polarity of those filaments is both parallel and antiparallel. These results are consistent with anillin playing a role in actin ring transition in vivo, where it might be responsible for thinning the ring-shaped apolar actin bundles.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/análise , Actinas/química , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas dos Microfilamentos/genética , Microscopia de Força Atômica , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Fotodegradação
9.
Sci Rep ; 9(1): 7451, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092848

RESUMO

F1-ATPase is a rotary motor protein in which the central γ-subunit rotates inside the cylinder made of α3ß3 subunits. To investigate interactions between the γ shaft and the cylinder at the molecular scale, load was imposed on γ through a polystyrene bead by three-dimensional optical trapping in the direction along which the shaft penetrates the cylinder. Pull-out event was observed under high-load, and thus load-dependency of lifetime of the interaction was estimated. Notably, accumulated counts of lifetime were comprised of fast and slow components. Both components exponentially dropped with imposed loads, suggesting that the binding energy is compensated by the work done by optical trapping. Because the mutant, in which the half of the shaft was deleted, showed only one fast component in the bond lifetime, the slow component is likely due to the native interaction mode held by multiple interfaces.


Assuntos
Proteínas Motores Moleculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Fenômenos Biofísicos/fisiologia , Modelos Moleculares , Conformação Proteica , ATPases Translocadoras de Prótons/fisiologia , Rotação , Torque
10.
Biochem Biophys Res Commun ; 504(4): 709-714, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213631

RESUMO

Single-molecule fluorescence polarization technique has been utilized to detect structural changes in biomolecules and intermolecular interactions. Here we developed a single-molecule fluorescence polarization measurement system, named circular orientation fluorescence emitter imaging (COFEI), in which a ring pattern of an acquired fluorescent image (COFEI image) represents an orientation of a polarization and a polarization factor. Rotation and pattern change of the COFEI image allow us to find changes in the polarization by eye and further values of the parameters of a polarization are determined by simple image analysis with high accuracy. We validated its potential applications of COFEI by three assays: 1) Detection of stepwise rotation of F1-ATPase via single quantum nanorod attached to the rotary shaft γ; 2) Visualization of binding of fluorescent ATP analog to the catalytic subunit in F1-ATPase; and 3) Association and dissociation of one head of dimeric kinesin-1 on the microtubule during its processive movement through single bifunctional fluorescent probes attached to the head. These results indicate that the COFEI provides us the advantages of the user-friendly measurement system and persuasive data presentations.


Assuntos
Proteínas de Bactérias/química , Proteínas Motores Moleculares/química , ATPases Translocadoras de Prótons/química , Imagem Individual de Molécula/métodos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Polarização de Fluorescência , Cinesinas/química , Cinesinas/metabolismo , Cinética , Microscopia de Fluorescência , Proteínas Motores Moleculares/metabolismo , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Rotação
11.
Structure ; 24(8): 1322-1334, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452403

RESUMO

Kinesin-14 is a unique minus-end-directed microtubule-based motor. A swinging motion of a class-specific N-terminal neck helix has been proposed to produce minus-end directionality. However, it is unclear how swinging of the neck helix is driven by ATP hydrolysis utilizing the highly conserved catalytic core among all kinesins. Here, using a motility assay, we show that in addition to the neck helix, the conserved five residues at the C-terminal region in kinesin-14, namely the neck mimic, are necessary to give kinesin-1 an ability to reverse its directionality toward the minus end of microtubules. Our structural analyses further demonstrate that the C-terminal neck mimic, in cooperation with conformational changes in the catalytic core during ATP binding, forms a kinesin-14 bundle with the N-terminal neck helix to swing toward the minus end of microtubules. Thus, the neck mimic plays a crucial role in coupling the chemical ATPase reaction with the mechanical cycle to produce the minus-end-directed motility of kinesin-14.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Cinesinas/química , Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Movimento (Física) , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 113(21): E2916-24, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27166420

RESUMO

Despite extensive studies, the structural basis for the mechanochemical coupling in the rotary molecular motor F1-ATPase (F1) is still incomplete. We performed single-molecule FRET measurements to monitor conformational changes in the stator ring-α3ß3, while simultaneously monitoring rotations of the central shaft-γ. In the ATP waiting dwell, two of three ß-subunits simultaneously adopt low FRET nonclosed forms. By contrast, in the catalytic intermediate dwell, two ß-subunits are simultaneously in a high FRET closed form. These differences allow us to assign crystal structures directly to both major dwell states, thus resolving a long-standing issue and establishing a firm connection between F1 structure and the rotation angle of the motor. Remarkably, a structure of F1 in an ε-inhibited state is consistent with the unique FRET signature of the ATP waiting dwell, while most crystal structures capture the structure in the catalytic dwell. Principal component analysis of the available crystal structures further clarifies the five-step conformational transitions of the αß-dimer in the ATPase cycle, highlighting the two dominant modes: the opening/closing motions of ß and the loosening/tightening motions at the αß-interface. These results provide a new view of tripartite coupling among chemical reactions, stator conformations, and rotary angles in F1-ATPase.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , ATPases Translocadoras de Prótons/química , Conformação Proteica
13.
Proc Natl Acad Sci U S A ; 111(23): 8601-6, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912194

RESUMO

Among the bacteria that glide on substrate surfaces, Mycoplasma mobile is one of the fastest, exhibiting smooth movement with a speed of 2.0-4.5 µm⋅s(-1) with a cycle of attachment to and detachment from sialylated oligosaccharides. To study the gliding mechanism at the molecular level, we applied an assay with a fluorescently labeled and membrane-permeabilized ghost model, and investigated the motility by high precision colocalization microscopy. Under conditions designed to reduce the number of motor interactions on a randomly oriented substrate, ghosts took unitary 70-nm steps in the direction of gliding. Although it remains possible that the stepping behavior is produced by multiple interactions, our data suggest that these steps are produced by a unitary gliding machine that need not move between sites arranged on a cytoskeletal lattice.


Assuntos
Trifosfato de Adenosina/metabolismo , Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos , Mycoplasma/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Hidrólise , Microscopia de Fluorescência , Modelos Biológicos , Movimento/efeitos dos fármacos , Movimento/fisiologia , Mycoplasma/metabolismo , Oligossacarídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Fatores de Tempo
14.
PLoS One ; 7(11): e45864, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144776

RESUMO

Transformations between G- (monomeric) and F-actin (polymeric) are important in cellular behaviors such as migration, cytokinesis, and morphing. In order to understand these transitions, we combined single-molecule Förster resonance energy transfer with total internal reflection fluorescence microscopy to examine conformational changes of individual actin protomers. We found that the protomers can take different conformational states and that the transition interval is in the range of hundreds of seconds. The distribution of these states was dependent on the environment, suggesting that actin undergoes spontaneous structural changes that accommodate itself to polymerization.


Assuntos
Actinas/química , Animais , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Modelos Moleculares , Polimerização , Conformação Proteica , Ratos
15.
Small ; 8(19): 3035-40, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22777889

RESUMO

Myosin VI is an adenosine triphosphate (ATP)-driven dimeric molecular motor that has dual function as a vesicle transporter and a cytoskeletal anchor. Recently, it was reported that myosin VI generates three types of steps by taking either a distant binding or adjacent binding state (noncanonical hand-over-hand step pathway). The adjacent binding state, in which both heads bind to an actin filament near one another, is unique to myosin VI and therefore may help explain its distinct features. However, detailed information of the adjacent binding state remains unclear. Here simultaneous observations of the head and tail domain during stepping are presented. These observations show that the lever arms tilt forward in the adjacent binding state. Furthermore, it is revealed that either head could take the subsequent step with equal probability from this state. Together with previous results, a comprehensive stepping scheme is proposed; it includes the tail domain motion to explain how myosin VI achieves its dual function.


Assuntos
Cadeias Pesadas de Miosina/química , Actinas/metabolismo , Sítios de Ligação , Humanos , Cinética , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
16.
Biophys J ; 101(9): 2201-6, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22067159

RESUMO

F(1)-ATPase is a water-soluble portion of F(o)F(1)-ATP synthase and rotary molecular motor that exhibits reversibility in chemical reactions. The rotational motion of the shaft subunit γ has been carefully scrutinized in previous studies, but a tilting motion of the shaft has never been explicitly postulated. Here we found a change in the radius of rotation of the probe attached to the shaft subunit γ between two different intermediate states in ATP hydrolysis: one waiting for ATP binding, and the other waiting for ATP hydrolysis and/or subsequent product release. Analysis of this radial difference indicates a ~4° outward tilting of the γ-subunit induced by ATP binding. The tilt angle is a new parameter, to our knowledge, representing the motion of the γ-subunit and provides a new constraint condition of the ATP-waiting conformation of F(1)-ATPase, which has not been determined as an atomic structure from x-ray crystallography.


Assuntos
Bacillus/enzimologia , ATPases Translocadoras de Prótons/química , Rotação , Difosfato de Adenosina/farmacologia , Bacillus/efeitos dos fármacos , Modelos Moleculares , Proteínas Mutantes/química , ATPases Translocadoras de Prótons/antagonistas & inibidores
17.
Cell ; 142(6): 879-88, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20850010

RESUMO

Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were attributed to an extended and relatively rigid lever arm; their variability to two stepsizes, one large (72 nm) and one small (44 nm). These results suggest that there exist two tilt angles during myosin-VI stepping, which correspond to the pre- and postpowerstroke states and regulate the leading head. The large steps are consistent with the previously reported hand-over-hand mechanism, while the small steps follow an inchworm-like mechanism and increase in frequency with ADP. Switching between these two mechanisms in a strain-sensitive, ADP-dependent manner allows myosin VI to fulfill its multiple cellular tasks including vesicle transport and membrane anchoring.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Galinhas , Dimerização , Ouro , Humanos , Nanopartículas Metálicas , Microscopia , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Pontos Quânticos
19.
Biosystems ; 88(3): 243-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17276585

RESUMO

Single molecule fluorescence resonance energy transfer (FRET) is the technique that has been developed by combining FRET measurement and single molecule fluorescence imaging. This technique allows us to measure the dynamic changes of the interaction and structures of biomolecules. In this study, the validity of the method was tested using fluorescence dyes on double stranded DNA molecules as a rigid spacer. FRET signals from double stranded DNA molecules were stable and their average FRET values provided the distance between the donor and acceptor in agreement with B-DNA type helix model. Next, the single molecule FRET method was applied to the studies on the dynamic structure of Ras, a signaling protein. The data showed that Ras has multiple conformational states and undergoes transition between them. This study on the dynamic conformation of Ras provided a clue for understanding the molecular mechanism of cell signaling switches.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , DNA/química , Transferência Ressonante de Energia de Fluorescência/instrumentação , Corantes Fluorescentes , Biologia de Sistemas , Termodinâmica , Proteínas ras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA