Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309003, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828764

RESUMO

Applying lattice strain to thin films, a critical factor to tailor their properties such as stabilizing a structural phase unstable at ambient pressure, generally necessitates heteroepitaxial growth to control the lattice mismatch with substrate. Therefore, while homoepitaxy, the growth of thin film on a substrate made of the same material, is a useful method to fabricate high-quality thin films, its application to studying strain-induced structural phases is limited. Contrary to this general belief, here the quasi-homoepitaxial growth of Cs and Rb thin films is reported with substantial in-plane compressive strain. This is achieved by utilizing the alkali-metal layer existing in bulk crystal of kagome metals AV3Sb5 (A = Cs and Rb) as a structural template. The angle-resolved photoemission spectroscopy measurements reveal the formation of metallic quantum well states and notable thickness-dependent quasiparticle lifetime. Comparison with density functional theory calculations suggests that the obtained thin films crystalize in the face-centered cubic structure, which is typically stable only under high pressure in bulk crystals. These findings provide a useful approach for synthesizing highly strained thin films by quasi-homoepitaxy, and pave the way for investigating many-body interactions in Fermi liquids with tunable dimensionality.

2.
Adv Sci (Weinh) ; 10(34): e2304461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867224

RESUMO

A current key challenge in 2D materials is the realization of emergent quantum phenomena in hetero structures via controlling the moiré potential created by the periodicity mismatch between adjacent layers, as highlighted by the discovery of superconductivity in twisted bilayer graphene. Generally, the lattice structure of the original host material remains unchanged even after the moiré superlattice is formed. However, much less attention is paid for the possibility that the moiré potential can also modify the original crystal structure itself. Here, it is demonstrated that octahedral MoTe2 which is unstable in bulk is stabilized in a commensurate MoTe2 /graphene hetero-bilayer due to the moiré potential created between the two layers. It is found that the reconstruction of electronic states via the moiré potential is responsible for this stabilization, as evidenced by the energy-gap opening at the Fermi level observed by angle-resolved photoemission and scanning tunneling spectroscopies. The present results provide a fresh approach to realize novel 2D quantum phases by utilizing the moiré potential.

3.
Nano Lett ; 23(5): 1673-1679, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36849129

RESUMO

Boron-based two-dimensional (2D) materials are an excellent platform for nanoelectronics applications. Rhombohedral boron monosulfide (r-BS) is attracting particular attention because of its unique layered crystal structure suitable for exploring various functional properties originating in the 2D nature. However, studies to elucidate its fundamental electronic states have been largely limited because only tiny powdered crystals were available, hindering a precise investigation by spectroscopy such as angle-resolved photoemission spectroscopy (ARPES). Here we report the direct mapping of the band structure with a tiny (∼20 × 20 µm2) r-BS powder crystal by utilizing microfocused ARPES. We found that r-BS is a p-type semiconductor with a band gap of >0.5 eV characterized by the anisotropic in-plane effective mass. The present results demonstrate the high applicability of micro-ARPES to tiny powder crystals and widen an opportunity to access the yet-unexplored electronic states of various novel materials.

4.
Adv Mater ; 34(51): e2205986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208073

RESUMO

Nitrogen (N) doping is one of the most effective approaches to tailor the chemical and physical properties of graphene. By the interplay between N dopants and 3D curvature of graphene lattices, N-doped 3D graphene displays superior performance in electrocatalysis and solar-energy harvesting for energy and environmental applications. However, the electrical transport properties and the electronic states, which are the key factors to understand the origins of the N-doping effect in 3D graphene, are still missing. The electronic properties of N-doped 3D graphene are systematically investigated by an electric-double-layer transistor method. It is demonstrated that Urbach-tail-like localized states are located around the neutral point of N-doped 3D graphene with the background metallic transport channels. The dual nature of electronic states, generated by the synergistic effect of N dopants and 3D curvature of graphene, can be the electronic origin of the high electrocatalysis, enhanced molecular adsorption, and light absorption of N-doped 3D graphene.

5.
Langmuir ; 38(44): 13401-13406, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36307095

RESUMO

Nanomaterials based on monoatomic bismuth (Bi) are attracting particular attention because they are candidates of two-dimensional (2D) topological insulators and Rashba metals useful for spintronic applications. We report convenient selective fabrication of two different types of ultrathin Bi films, bismuthene and α-Bi on hydrogen-terminated SiC(0001), by combining the molecular-beam-epitaxy (MBE) method and the low-temperature and low-pressure hydrogen chemical etching of SiC. We have succeeded in selectively fabricating these two different Bi phases by simply tuning the substrate temperature during the MBE process. We observed that while bismuthene and α-Bi showed a similar low-energy electron diffraction pattern of the (√3 × âˆš3)R30° periodicity, angle-resolved photoemission spectroscopy revealed a sizable difference in the band structure; bismuthene shows a massive Dirac cone, a signature of 2D topological insulators, whereas α-Bi exhibits an insulating behavior with a large band gap of more than 1.8 eV. We discuss the underlying mechanism of selective fabrication in terms of hydrogen desorption from the hydrogen-terminated SiC substrate.

6.
Rev Sci Instrum ; 93(3): 033906, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364976

RESUMO

Angle-resolved photoemission spectroscopy using a micro-focused beam spot [micro-angle-resolved photoemission spectroscopy (ARPES)] is becoming a powerful tool to elucidate key electronic states of exotic quantum materials. We have developed a versatile micro-ARPES system based on the synchrotron radiation beam focused with a Kirkpatrick-Baez mirror optics. The mirrors are monolithically installed on a stage, which is driven with five-axis motion, and are vibrationally separated from the ARPES measurement system. Spatial mapping of the Au photolithography pattern on Si signifies the beam spot size of 10 µm (horizontal) × 12 µm (vertical) at the sample position, which is well suited to resolve the fine structure in local electronic states. Utilization of the micro-beam and the high precision sample motion system enables the accurate spatially resolved band-structure mapping, as demonstrated by the observation of a small band anomaly associated with tiny sample bending near the edge of a cleaved topological insulator single crystal.

7.
Sci Rep ; 11(1): 21937, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754019

RESUMO

Topological Dirac semimetals (TDSs) offer an excellent opportunity to realize outstanding physical properties distinct from those of topological insulators. Since TDSs verified so far have their own problems such as high reactivity in the atmosphere and difficulty in controlling topological phases via chemical substitution, it is highly desirable to find a new material platform of TDSs. By angle-resolved photoemission spectroscopy combined with first-principles band-structure calculations, we show that ternary compound BaMg2Bi2 is a TDS with a simple Dirac-band crossing around the Brillouin-zone center protected by the C3 symmetry of crystal. We also found that isostructural SrMg2Bi2 is an ordinary insulator characterized by the absence of band inversion due to the reduction of spin-orbit coupling. Thus, XMg2Bi2 (X = Sr, Ba, etc.) serves as a useful platform to study the interplay among crystal symmetry, spin-orbit coupling, and topological phase transition around the TDS phase.

8.
Nat Commun ; 12(1): 5873, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620875

RESUMO

Combination of low-dimensionality and electron correlation is vital for exotic quantum phenomena such as the Mott-insulating phase and high-temperature superconductivity. Transition-metal dichalcogenide (TMD) 1T-TaS2 has evoked great interest owing to its unique nonmagnetic Mott-insulator nature coupled with a charge-density-wave (CDW). To functionalize such a complex phase, it is essential to enhance the CDW-Mott transition temperature TCDW-Mott, whereas this was difficult for bulk TMDs with TCDW-Mott < 200 K. Here we report a strong-coupling 2D CDW-Mott phase with a transition temperature onset of ~530 K in monolayer 1T-TaSe2. Furthermore, the electron correlation derived lower Hubbard band survives under external perturbations such as carrier doping and photoexcitation, in contrast to the bulk counterpart. The enhanced Mott-Hubbard and CDW gaps for monolayer TaSe2 compared to NbSe2, originating in the lattice distortion assisted by strengthened correlations and disappearance of interlayer hopping, suggest stabilization of a likely nonmagnetic CDW-Mott insulator phase well above the room temperature. The present result lays the foundation for realizing monolayer CDW-Mott insulator based devices operating at room temperature.

9.
Adv Mater ; 32(48): e2005838, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118240

RESUMO

3D integration of graphene has attracted attention for realizing carbon-based electronic devices. While the 3D integration can amplify various excellent properties of graphene, the influence of 3D curved surfaces on the fundamental physical properties of graphene has not been clarified. The electronic properties of 3D nanoporous graphene with a curvature radius down to 25-50 nm are systematically investigated and the ambipolar electronic states of Dirac fermions are essentially preserved in the 3D graphene nanoarchitectures, while the 3D curvature can effectively suppress the slope of the linear density of states of Dirac fermion near the Fermi level are demonstrated. Importantly, the 3D curvature can be utilized to tune the back-scattering-suppressed electrical transport of Dirac fermions and enhance both electron localization and electron-electron interaction. As a result, nanoscale curvature provides a new degree of freedom to manipulate 3D graphene electrical properties, which may pave a new way to design new 3D graphene devices with preserved 2D electronic properties and novel functionalities.

10.
Proc Natl Acad Sci U S A ; 116(49): 24470-24474, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744873

RESUMO

The discovery of high-temperature (T c) superconductivity in monolayer FeSe on SrTiO3 raised a fundamental question: Whether high T c is commonly realized in monolayer iron-based superconductors. Tetragonal FeS is a key material to resolve this issue because bulk FeS is a superconductor with T c comparable to that of isostructural FeSe. However, difficulty in synthesizing tetragonal monolayer FeS due to its metastable nature has hindered further investigations. Here we report elucidation of band structure of monolayer FeS on SrTiO3, enabled by a unique combination of in situ topotactic reaction and molecular-beam epitaxy. Our angle-resolved photoemission spectroscopy on FeS and FeSe revealed marked similarities in the electronic structure, such as heavy electron doping and interfacial electron-phonon coupling, both of which have been regarded as possible sources of high T c in FeSe. However, surprisingly, high-T c superconductivity is absent in monolayer FeS. This is linked to the weak superconducting pairing in electron-doped multilayer FeS in which the interfacial effects are absent. Our results strongly suggest that the cross-interface electron-phonon coupling enhances T c only when it cooperates with the pairing interaction inherent to the superconducting layer. This finding provides a key insight to explore heterointerface high-T c superconductors.

11.
ACS Nano ; 12(11): 10977-10983, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30335952

RESUMO

One of the key challenges in condensed-matter physics is to establish a topological superconductor that hosts exotic Majorana fermions. Although various heterostructures consisting of conventional BCS (Bardeen-Cooper-Schrieffer) superconductors as well as doped topological insulators were intensively investigated, no conclusive evidence for Majorana fermions has been provided. This is mainly because of their very low superconducting transition temperatures ( Tc) and small superconducting-gap magnitude. Here, we report a possible realization of topological superconductivity at very high temperatures in a hybrid of Bi(110) ultrathin film and copper oxide superconductor Bi2Sr2CaCu2O8+δ (Bi2212). Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we found that three-bilayer-thick Bi(110) on Bi2212 exhibits a proximity-effect-induced s-wave energy gap as large as 7.5 meV which persists up to Tc of Bi2212 (85 K). The small Fermi energy and strong spin-orbit coupling of Bi(110), together with the large pairing gap and high Tc, make this system a prime candidate for exploring stable Majorana fermions at very high temperatures.

12.
Nano Lett ; 18(5): 3235-3240, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701062

RESUMO

We have fabricated bismuth (Bi) ultrathin films on a charge-density-wave (CDW) compound 1T-TaS2 and elucidated electronic states by angle-resolved photoemission spectroscopy and first-principles band-structure calculations. We found that the Bi film on 1T-TaS2 undergoes a structural transition from (111) to (110) upon reducing the film thickness, accompanied by a drastic change in the energy band structure. We also revealed that while two-bilayer-thick Bi(110) film on Si(111) is characterized by a dispersive band touching the Fermi level ( EF), the energy band of the same film on 1T-TaS2 exhibits holelike dispersion with a finite energy gap at EF. We discuss the origin of such intriguing differences in terms of the CDW proximity effect.

13.
Phys Chem Chem Phys ; 20(9): 6024-6033, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29300402

RESUMO

In recent years, there has been increasing demand for 3D porous graphene structures with excellent 2D characteristics and great potential. As one avenue, several approaches for fabricating 3D porous graphene network structures have been proposed to realize multi-functional graphene materials with 2D graphene structures. Herein, we overview characteristics of 3D porous graphene for applications in future electronic devices along with physical insights into "2D to 3D graphene", in which the characters of 2D graphene such as massless Dirac fermions are well preserved. The present review thus summarizes recent 3D porous graphene studies with a perspective for providing new and board applications of graphene in electronic devices.

14.
Adv Mater ; 28(46): 10304-10310, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27726184

RESUMO

Nanoporous graphene- based electric-double-layer transistors (EDLTs) are successfully fabricated. Transport measurements of the EDLTs demonstrate that the ambipolar electronic states of massless Dirac fermions with a high carrier mobility are well preserved in 3D nanoporous graphene along with anomalous nonlinear Hall resistance and exceptional transistor on/off ratio. This study may open a new avenue for device applications of graphene.

15.
ACS Nano ; 10(2): 2761-5, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26815333

RESUMO

We report the direct evidence for superconductivity in Ca-intercalated bilayer graphene C6CaC6, which is regarded as the thinnest limit of Ca-intercalated graphite. We performed the electrical transport measurements with the in situ 4-point-probe method in ultrahigh vacuum under zero- or nonzero-magnetic field for pristine bilayer graphene, Li-intercalated bilayer graphene (C6LiC6) and C6CaC6 fabricated on SiC substrate. We observed that the zero-resistance state occurs in C6CaC6 with the onset temperature (T(c)(onset)) of 4 K, while the T(c)(onset) is gradually decreased upon applying the magnetic field. This directly proves the superconductivity origin of the zero resistance in C6CaC6. On the other hand, both pristine bilayer graphene and C6LiC6 exhibit nonsuperconducting behavior, suggesting the importance of intercalated atoms and its species to drive the superconductivity.

16.
ACS Nano ; 10(1): 1341-5, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26624791

RESUMO

Reducing the dimension in materials sometimes leads to unexpected discovery of exotic and/or pronounced physical properties such as quantum Hall effect in graphene and high-temperature superconductivity in iron-chalcogenide atomically thin films. Transition-metal dichalcogenides (TMDs) provide a fertile ground for studying the interplay between dimensionality and electronic properties, since they exhibit a variety of electronic phases like semiconducting, superconducting, and charge-density-wave (CDW) states. Among TMDs, bulk 1T-TiSe2 has been a target of intensive studies due to its unusual CDW properties with the periodic lattice distortions characterized by the three-dimensional (3D) commensurate wave vector. Clarifying the ground states of its two-dimensional (2D) counterpart is of great importance not only to pin down the origin of CDW, but also to find unconventional physical properties characteristic of atomic-layer materials. Here, we show the first experimental evidence for the realization of 2D CDW phase without Fermi-surface nesting in monolayer 1T-TiSe2. Our angle-resolved photoemission spectroscopy (ARPES) signifies an electron pocket at the Brillouin-zone corner above the CDW-transition temperature (TCDW ∼ 200 K), while, below TCDW, an additional electron pocket and replica bands appear at the Brillouin-zone center and corner, respectively, due to the back-folding of bands by the 2 × 2 superstructure potential. Similarity in the spectral signatures to bulk 1T-TiSe2 implies a common driving force of CDW, i.e., exciton condensation, whereas the larger energy gap below TCDW in monolayer 1T-TiSe2 suggests enhancement of electron-hole coupling upon reducing dimensionality. The present result lays the foundation for the electronic-structure engineering based with atomic-layer TMDs.

17.
Phys Rev Lett ; 114(14): 146103, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910139

RESUMO

We report the emergence of a charge-density wave (CDW) in Ca-intercalated bilayer graphene (C_{6}CaC_{6}), the thinnest limit of superconducting C_{6}Ca, observed by low-temperature, high-magnetic-field scanning tunneling microscopy or spectroscopy, and angle-resolved photoemission spectroscopy. While the possible superconductivity was not observed in epitaxially grown C_{6}CaC_{6} on a SiC substrate, a CDW order different from that observed on the surface of bulk C_{6}Ca was observed. It is inferred that the CDW state is induced by the potential modulation due to the commensurate lattice matching between the C_{6}CaC_{6} film and the SiC substrate.

18.
Adv Mater ; 27(5): 856-60, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25502913

RESUMO

Calcium-intercalated multilayer silicene CaSi2 exhibits a massless Dirac-cone π-electron-band dispersion like graphene, while the Dirac point is about 2 eV away from the Fermi level due to diiimide-based charge transfer from the Ca atoms to the silicene layers. This indicates that the graphene-like electronic structure with a massless Dirac cone is stably formed in the metal-intercalated multilayer silicene.

19.
Angew Chem Int Ed Engl ; 53(19): 4822-6, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24683165

RESUMO

We report three-dimensional (3D) nanoporous graphene with preserved 2D electronic properties, tunable pore sizes, and high electron mobility for electronic applications. The complex 3D network comprised of interconnected graphene retains a 2D coherent electron system of massless Dirac fermions. The transport properties of the nanoporous graphene show a semiconducting behavior and strong pore-size dependence, together with unique angular independence. The free-standing, large-scale nanoporous graphene with 2D electronic properties and high electron mobility holds great promise for practical applications in 3D electronic devices.

20.
Proc Natl Acad Sci U S A ; 109(48): 19610-3, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23139407

RESUMO

Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we report a unique experimental realization of 2D GIC, by fabricating calcium-intercalated bilayer graphene C(6)CaC(6) on silicon carbide. We have investigated the structure and electronic states by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. We observed a free-electron-like interlayer band at the Brillouin-zone center, which is thought to be responsible for the superconductivity in 3D GICs, in addition to a large π* Fermi surface at the zone boundary. The present success in fabricating Ca-intercalated bilayer graphene would open a promising route to search for other 2D superconductors as well as to explore its application in devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA