Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 595(7): 954-959, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32929763

RESUMO

Abscisic acid (ABA), a stress hormone produced by plants to cope with various environmental stresses, has potential as a mobile molecule. Recently, several types of ABA transporters have been described. We previously found a membrane transporter, AtABCG25, that is involved in intercellular ABA transport in Arabidopsis thaliana. However, it is not yet known whether there are any homologs of AtABCG25 in different plant species. Here, we identified a homolog of AtABCG25 in Brachypodium distachyon, named BdABCG25, and characterized its function. We examined the ABA transport activity of BdABCG25 and the physiological properties of BdABCG25 expression in Arabidopsis. The results suggest that BdABCG25 is a putative functional homolog of AtABCG25. Regulating intercellular ABA transport may be a novel strategy for breeding stress-tolerant monocot crops.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Brachypodium/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Brachypodium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Sci Rep ; 7(1): 12501, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970576

RESUMO

Stomatal regulation is important for water transpiration from plants. Stomatal opening and closing are controlled by many transporter proteins in guard cells. AtABCG22 is a member of the ATP-binding cassette (ABC) transporters and is a stomatal regulator; however, the function of AtABCG22 has not yet been determined fully, although a mutant phenotype included a significant effect on stomatal status. Here, we further investigated the function of the AtABCG22 gene and its functional relationships with other subfamily genes. Among close family members, we found a functional relationship of stomatal phenotypes with AtABCG21, which is also expressed specifically in guard cells. Based on an analysis of double mutants, adding the atabcg21 mutation to atabcg22 mutant partially suppressed the open-stomata phenotype of atabcg22. Multiple-mutant analyses indicated that this suppression was independent of abscisic acid signaling in guard cells. We also found that atabcg22 mutant showed a unique time course-dependent phenotype, being defective in maintenance of stomatal status after initial stomatal opening elicited by light signaling. The function of AtABCG22 and its relationship with AtABCG21 in stomatal regulation are considered.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/genética , Transpiração Vegetal/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Transdução de Sinal Luminoso , Mutação , Fenótipo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Plant Sci ; 251: 75-81, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27593465

RESUMO

In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Água/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Conservação dos Recursos Naturais , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Transdução de Sinais
4.
Nat Commun ; 6: 5928, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557369

RESUMO

Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl(-)-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Primers do DNA/genética , DNA Complementar/genética , Fluorescência , Técnicas de Inativação de Genes , Imuno-Histoquímica , Técnicas In Vitro , Luz , Proteínas de Membrana Transportadoras/metabolismo , Reação em Cadeia da Polimerase , Estresse Fisiológico/genética
5.
Plant Physiol ; 164(4): 1587-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24521878

RESUMO

Abscisic acid (ABA) is a phytohormone that responds to environmental stresses, such as water deficiency. Recent studies have shown that ABA biosynthetic enzymes are expressed in the vascular area under both nonstressed and water-stressed growth conditions. However, specific cells in the vasculature involved in ABA biosynthesis have not been identified. Here, we detected the expression of two genes encoding ABA biosynthetic enzymes, ABSCISIC ACID DEFICIENT2 and ABSCISIC ALDEHYDE OXIDASE3, in phloem companion cells in vascular tissues. Furthermore, we identified an ATP-binding cassette transporter, Arabidopsis thaliana ABCG25 (AtABCG25), expressed in the same cells. Additionally, AtABCG25-expressing Spodoptera frugiperda9 culture cells showed an ABA efflux function. Finally, we observed that enhancement of ABA biosynthesis in phloem companion cells induced guard cell responses, even under normal growth conditions. These results show that ABA is synthesized in specific cells and can be transported to target cells in different tissues.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/metabolismo , Transdução de Sinais , Animais , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Marcação por Isótopo , Especificidade de Órgãos , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transporte Proteico , Células Sf9
6.
J Plant Physiol ; 168(16): 2001-5, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21696844

RESUMO

In plants, pollen is the male gametophyte that is generated from microspores, which are haploid cells produced after meiosis of diploid pollen mother cells in floral anthers. In normal maturation, microspores interact with the tapetum, which consists of one layer of metabolically active cells enclosing the locule in anthers. The tapetum plays several important roles in the maturation of microspores. ATP-binding cassette (ABC) transporters are a highly conserved protein super-family that uses the energy released in ATP hydrolysis to transport substrates. The ABC transporter gene family is more diverse in plants than in animals. Previously, we reported that an Arabidopsis half-size type ABC transporter gene, COF1/AtWBC11/AtABCG11, is involved in lipid transport for the construction of cuticle layers and pollen coats in normal organ formation, as compared to CER5/AtWBC12/AtABCG12. However, physiological functions of most other ABCG members are unknown. Here, we identified another family gene, AtABCG26, which is required for pollen development in Arabidopsis. An AtABCG26 mutant developed very few pollen grains, resulting in a male-sterile phenotype. By investigating microspore and pollen development in this mutant, we observed that there was a slight abnormality in tetrad morphology prior to the formation of haploid microspores. At a later stage, we could not detect exine deposition on the microspore surface. During pollen maturation, many grains in the mutant anthers got aborted, and surviving grains were found to be defective in mitosis. Transmission of the mutant allele through male gametophytes appeared to be normal in genetic transmission analysis, supporting the view that the pollen function was disturbed by sporophytic defects in the AtABCG26 mutant. AtABCG26 can be expected to be involved in the transport of substrates such as sporopollenin monomers from tapetum to microspores, which both are plant-specific structures critical to pollen development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/fisiologia , Pólen/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genótipo , Meiose , Mutagênese Insercional , Fenótipo , Infertilidade das Plantas , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento
7.
Plant J ; 67(5): 885-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21575091

RESUMO

In plants, water vapour is released into the atmosphere through stomata in a process called transpiration. Abscisic acid (ABA) is a key phytohormone that facilitates stomatal closure through its action on guard cells. Recently, ATP-binding cassette (ABC) transporter genes, AtABCG25 and AtABCG40, were shown to be involved in ABA transport and responses. However, the functions of many other AtABCG family genes are still unknown. Here, we identified another ABCG gene (AtABCG22) that is required for stomatal regulation in Arabidopsis. The atabcg22 mutant plants had lower leaf temperatures and increased water loss, implying elevated transpiration through an influence on stomatal regulation. We also found that atabcg22 plants were more suspectible to drought stress than wild-type plants. AtABCG22 was expressed in aerial organs, mainly guard cells, in which the gene expression pattern was consistent with the mutant phenotypes. Using double mutants, we investigated the genetic relationships between the mutations. The atabcg22 mutation further increased the water loss of srk2e/ost1 mutants, which were defective in ABA signalling in guard cells. Also, the atabcg22 mutation enhanced the phenotype of nced3 mutants, which were defective in ABA biosynthesis. Accordingly, the additive roles of AtABCG22 functions in ABA signalling and ABA biosynthesis are discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Transpiração Vegetal/genética , Água/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Secas , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Mutagênese Insercional , Cebolas/genética , Cebolas/metabolismo , Cebolas/ultraestrutura , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/ultraestrutura , Plântula/genética , Plântula/fisiologia , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 107(5): 2361-6, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133881

RESUMO

Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses, seed maturation, germination, and senescence. ABA is predominantly produced in vascular tissues and exerts hormonal responses in various cells, including guard cells. Although ABA responses require extrusion of ABA from ABA-producing cells in an intercellular ABA signaling pathway, the transport mechanisms of ABA through the plasma membrane remain unknown. Here we isolated an ATP-binding cassette (ABC) transporter gene, AtABCG25, from Arabidopsis by genetically screening for ABA sensitivity. AtABCG25 was expressed mainly in vascular tissues. The fluorescent protein-fused AtABCG25 was localized at the plasma membrane in plant cells. In membrane vesicles derived from AtABCG25-expressing insect cells, AtABCG25 exhibited ATP-dependent ABA transport. The AtABCG25-overexpressing plants showed higher leaf temperatures, implying an influence on stomatal regulation. These results strongly suggest that AtABCG25 is an exporter of ABA and is involved in the intercellular ABA signaling pathway. The presence of the ABA transport mechanism sheds light on the active control of multicellular ABA responses to environmental stresses among plant cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Linhagem Celular , Membrana Celular/metabolismo , Primers do DNA/genética , Expressão Gênica , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera , Distribuição Tecidual , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA